Adaptive Synchronization of Neural and Physical Oscillators
–Neural Information Processing Systems
Animal locomotion patterns are controlled by recurrent neural networks called central pattern generators (CPGs). Although a CPG can oscillate autonomously, its rhythm and phase must be well coordinated with the state of the physical system using sensory inputs. In this paper we propose a learning algorithm for synchronizing neural and physical oscillators with specific phase relationships. Sensory input connections are modified by the correlation between cellular activities and input signals. Simulations show that the learning rule can be used for setting sensory feedback connections to a CPG as well as coupling connections between CPGs. 1 CENTRAL AND SENSORY MECHANISMS IN LOCOMOTION CONTROL Patterns of animal locomotion, such as walking, swimming, and fiying, are generated by recurrent neural networks that are located in segmental ganglia of invertebrates and spinal cords of vertebrates (Barnes and Gladden, 1985).
Neural Information Processing Systems
Dec-31-1992