Topographic Transformation as a Discrete Latent Variable

Jojic, Nebojsa, Frey, Brendan J.

Neural Information Processing Systems 

A very small amount of shearing will move the point only slightly, so deforming the object by shearing will trace a continuous curve in the space of pixel intensities. As illustrated in Fig. la, extensive levels of shearing will produce a highly nonlinear curve (consider shearing a thin vertical line), although the curve can be approximated by a straight line locally. Linear approximations of the transformation manifold have been used to significantly improve the performance of feedforward discriminative classifiers such as nearest neighbors (Simard et al., 1993) and multilayer perceptrons (Simard et al., 1992). Linear generative models (factor analysis, mixtures of factor analysis) have also been modified using linear approximations of the transformation manifold to build in some degree of transformation invariance (Hinton et al., 1997). In general, the linear approximation is accurate for transformations that couple neighboring pixels, but is inaccurate for transformations that couple nonneighboring pixels. In some applications (e.g., handwritten digit recognition), the input can be blurred so that the linear approximation becomes more robust. For significant levels of transformation, the nonlinear manifold can be better modeled using a discrete approximation. For example, the curve in Figure 1a can be 478 N. Jojic and B. J. Frey

Similar Docs  Excel Report  more

TitleSimilaritySource
None found