Local Probability Propagation for Factor Analysis
–Neural Information Processing Systems
Ever since Pearl's probability propagation algorithm in graphs with cycles was shown to produce excellent results for error-correcting decoding a few years ago, we have been curious about whether local probability propagation could be used successfully for machine learning. One of the simplest adaptive models is the factor analyzer, which is a two-layer network that models bottom layer sensory inputs as a linear combination of top layer factors plus independent Gaussian sensor noise. We show that local probability propagation in the factor analyzer network usually takes just a few iterations to perform accurate inference, even in networks with 320 sensors and 80 factors. We derive an expression for the algorithm's fixed point and show that this fixed point matches the exact solution in a variety of networks, even when the fixed point is unstable. We also show that this method can be used successfully to perform inference for approximate EM and we give results on an online face recognition task. 1 Factor analysis A simple way to encode input patterns is to suppose that each input can be wellapproximated by a linear combination of component vectors, where the amplitudes of the vectors are modulated to match the input. For a given training set, the most appropriate set of component vectors will depend on how we expect the modulation levels to behave and how we measure the distance between the input and its approximation.
Neural Information Processing Systems
Dec-31-2000