Discriminative Structure Learning of Arithmetic Circuits

Rooshenas, Amirmohammad (University of Oregon) | Lowd, Daniel (University of Oregon)

AAAI Conferences 

The biggest limitation of probabilistic graphical models is the complexity of inference, which is often intractable. An appealing alternative is to use tractable probabilistic models, such as arithmetic circuits (ACs) and sum-product networks (SPNs), in which marginal and conditional queries can be answered efficiently. In this paper, we present the first discriminative structure learning algorithm for ACs, DACLearn (Discriminative AC Learner), which optimizes conditional log-likelihood. Based on our experiments, DACLearn learns models that are more accurate and compact than other tractable generative and discriminative baselines.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found