Learning Mixture Hierarchies
Vasconcelos, Nuno, Lippman, Andrew
–Neural Information Processing Systems
The hierarchical representation of data has various applications in domains such as data mining, machine vision, or information retrieval. In this paper we introduce an extension of the Expectation-Maximization (EM) algorithm that learns mixture hierarchies in a computationally efficient manner. Efficiency is achieved by progressing in a bottom-up fashion, i.e. by clustering the mixture components of a given level in the hierarchy to obtain those of the level above. This cl ustering requires onl y knowledge of the mixture parameters, there being no need to resort to intermediate samples. In addition to practical applications, the algorithm allows a new interpretation of EM that makes clear the relationship with nonparametric kernel-based estimation methods, provides explicit control over the tradeoff between the bias and variance of EM estimates, and offers new insights about the behavior of deterministic annealing methods commonly used with EM to escape local minima of the likelihood.
Neural Information Processing Systems
Dec-31-1999
- Country:
- North America > United States
- California (0.14)
- Massachusetts > Middlesex County
- Cambridge (0.14)
- North America > United States
- Technology: