Distributed Neural Information Processing in the Vestibulo-Ocular System

Lau, Clifford, Honrubia, Vicente

Neural Information Processing Systems 

DISTRIBUTED NEURAL INFORMATION PROCESSING IN THE VESTIBULO-OCULAR SYSTEM Clifford Lau Office of Naval Research Detach ment Pasadena, CA 91106 Vicente Honrubia* UCLA Division of Head and Neck Surgery Los Angeles, CA 90024 ABSTRACT A new distributed neural information-processing model is proposed to explain the response characteristics of the vestibulo-ocular system and to reflect more accurately the latest anatomical and neurophysiological data on the vestibular afferent fibers and vestibular nuclei. In this model, head motion is sensed topographically by hair cells in the semicircular canals. Hair cell signals are then processed by multiple synapses in the primary afferent neurons which exhibit a continuum of varying dynamics. The model is an application of the concept of "multilayered" neural networks to the description of findings in the bullfrog vestibular nerve, and allows us to formulate mathematically the behavior of an assembly of neurons whose physiological characteristics vary according to their anatomical properties. INTRODUCTION Traditionally the physiological properties of individual vestibular afferent neurons have been modeled as a linear time-invariant system based on Steinhausents description of cupular motion.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found