Quantile Propagation for Wasserstein-Approximate Gaussian Processes, Edwin V. Bonilla

Neural Information Processing Systems 

Approximate inference techniques are the cornerstone of probabilistic methods based on Gaussian process priors. Despite this, most work approximately optimizes standard divergence measures such as the Kullback-Leibler (KL) divergence, which lack the basic desiderata for the task at hand, while chiefly offering merely technical convenience. We develop a new approximate inference method for Gaussian process models which overcomes the technical challenges arising from abandoning these convenient divergences.