Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, Payel Das

Neural Information Processing Systems 

In this paper we propose a novel method that provides contrastive explanations justifying the classification of an input by a black box classifier such as a deep neural network. Given an input we find what should be minimally and sufficiently present (viz.