Replicator Equations, Maximal Cliques, and Graph Isomorphism

Pelillo, Marcello

Neural Information Processing Systems 

We present a new energy-minimization framework for the graph isomorphism problem which is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. To solve the program we use "replicator" equations, a class of simple continuous-and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inability to escape from local solutions, they nevertheless provide experimental results which are competitive with those obtained using more elaborate mean-field annealing heuristics. 1 INTRODUCTION The graph isomorphism problem is one of those few combinatorial optimization problems which still resist any computational complexity characterization [6]. Despite decades of active research, no polynomial-time algorithm for it has yet been found.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found