Generative Retrieval Meets Multi-Graded Relevance Yubao Tang 1,2

Neural Information Processing Systems 

Generative retrieval represents a novel approach to information retrieval. It uses an encoder-decoder architecture to directly produce relevant document identifiers (docids) for queries. While this method offers benefits, current approaches are limited to scenarios with binary relevance data, overlooking the potential for documents to have multi-graded relevance. Extending generative retrieval to accommodate multi-graded relevance poses challenges, including the need to reconcile likelihood probabilities for docid pairs and the possibility of multiple relevant documents sharing the same identifier.