A Practice Strategy for Robot Learning Control
–Neural Information Processing Systems
"Trajectory Extension Learning" is a new technique for Learning Control in Robots which assumes that there exists some parameter of the desired trajectory that can be smoothly varied from a region of easy solvability of the dynamics to a region of desired behavior which may have more difficult dynamics. By gradually varying the parameter, practice movements remain near the desired path while a Neural Network learns to approximate the inverse dynamics. For example, the average speed of motion might be varied, and the inverse dynamics can be "bootstrapped" from slow movements with simpler dynamics to fast movements. This provides an example of the more general concept of a "Practice Strategy" in which a sequence of intermediate tasks is used to simplify learning a complex task. I show an example of the application of this idea to a real 2-joint direct drive robot arm.
Neural Information Processing Systems
Dec-31-1993
- Country:
- North America > United States > Massachusetts > Middlesex County > Cambridge (0.15)
- Technology: