Graphical Gaussian Vector for Image Categorization

Neural Information Processing Systems 

This paper proposes a novel image representation called a Graphical Gaussian Vector (GGV), which is a counterpart of the codebook and local feature matching approaches. We model the distribution of local features as a Gaussian Markov Random Field (GMRF) which can efficiently represent the spatial relationship among local features. Using concepts of information geometry, proper parameters and a metric from the GMRF can be obtained. Then we define a new image feature by embedding the proper metric into the parameters, which can be directly applied to scalable linear classifiers. We show that the GGV obtains better performance over the state-of-the-art methods in the standard object recognition datasets and comparable performance in the scene dataset.