Instance-Based Relevance Feedback for Image Retrieval

Gia\-cin\-to, Giorgio, Roli, Fabio

Neural Information Processing Systems 

High retrieval precision in content-based image retrieval can be attained by adopting relevance feedback mechanisms. These mechanisms require that the user judges the quality of the results of the query by marking all the retrieved images as being either relevant or not. Then, the search engine exploits this information to adapt the search to better meet user's needs. At present, the vast majority of proposed relevance feedback mechanisms are formulated in terms of search model that has to be optimized. Such an optimization involves the modification of some search parameters so that the nearest neighbor of the query vector contains the largest number of relevant images.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found