3D Gaussian Rendering Can Be Sparser: Efficient Rendering via Learned Fragment Pruning
–Neural Information Processing Systems
This largely limits its application to resource-constrained devices and applications. Despite advances in Gaussian pruning techniques that aim to remove individual 3D Gaussian primitives, the significant reduction in primitives often fails to translate into commensurate increases in rendering speed, impeding efficiency and practical deployment. We identify that this discrepancy arises due to the overlooked impact of fragment count per Gaussian (i.e., the number of pixels each Gaussian is projected onto). To bridge this gap and meet the growing demands for efficient on-device 3D Gaussian rendering, we propose fragment pruning, an orthogonal enhancement to existing pruning methods that can significantly accelerate rendering by selectively pruning fragments within each Gaussian.
Neural Information Processing Systems
May-28-2025, 10:01:51 GMT