Uniqueness of the SVM Solution

Burges, Christopher J. C., Crisp, David J.

Neural Information Processing Systems 

We give necessary and sufficient conditions for uniqueness of the support vector solution for the problems of pattern recognition and regression estimation, for a general class of cost functions. We show that if the solution is not unique, all support vectors are necessarily at bound, and we give some simple examples of non-unique solutions. We note that uniqueness of the primal (dual) solution does not necessarily imply uniqueness of the dual (primal) solution. We show how to compute the threshold b when the solution is unique, but when all support vectors are at bound, in which case the usual method for determining b does not work. 1 Introduction Support vector machines (SVMs) have attracted wide interest as a means to implement structural risk minimization for the problems of classification and regression estimation. The fact that training an SVM amounts to solving a convex quadratic programming problem means that the solution found is global, and that if it is not unique, then the set of global solutions is itself convex; furthermore, if the objective function is strictly convex, the solution is guaranteed to be unique [1]1.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found