Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks

Wang, Zhiguang (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County)

AAAI Conferences 

Inspired by recent successes of deep learning in computer vision and speech recognition, we propose a novel framework to encode time series data as different types of images, namely, Gramian Angular Fields (GAF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for classification. Using a polar coordinate system, GAF images are represented as a Gramian matrix where each element is the trigonometric sum (i.e., superposition of directions) between different time intervals. MTF images represent the first order Markov transition probability along one dimension and temporal dependency along the other. We used Tiled Convolutional Neural Networks (tiled CNNs) on 12 standard datasets to learn high-level features from individual GAF, MTF, and GAF-MTF images that resulted from combining GAF and MTF representations into a single image. The classification results of our approach are competitive with five stateof-the-art approaches. An analysis of the features and weights learned via tiled CNNs explains why the approach works.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found