Automatic Learning Rate Maximization by On-Line Estimation of the Hessian's Eigenvectors
LeCun, Yann, Simard, Patrice Y., Pearlmutter, Barak
–Neural Information Processing Systems
We propose a very simple, and well principled way of computing the optimal step size in gradient descent algorithms. The online version is very efficient computationally, and is applicable to large backpropagation networks trained on large data sets. The main ingredient is a technique for estimating the principal eigenvalue(s) and eigenvector(s) of the objective function's second derivative matrix (Hessian), which does not require to even calculate the Hessian. Several other applications of this technique are proposed for speeding up learning, or for eliminating useless parameters. 1 INTRODUCTION Choosing the appropriate learning rate, or step size, in a gradient descent procedure such as backpropagation, is simultaneously one of the most crucial and expertintensive part of neural-network learning. We propose a method for computing the best step size which is both well-principled, simple, very cheap computationally, and, most of all, applicable to online training with large networks and data sets.
Neural Information Processing Systems
Dec-31-1993
- Country:
- North America
- Canada > Ontario
- Toronto (0.14)
- United States > Massachusetts
- Hampshire County > Amherst (0.14)
- Canada > Ontario
- North America
- Industry:
- Education > Educational Setting > Online (0.54)
- Technology: