One-Class LP Classifiers for Dissimilarity Representations

Pekalska, Elzbieta, Tax, David M.J., Duin, Robert

Neural Information Processing Systems 

Problems in which abnormal or novel situations should be detected can be approached by describing the domain of the class of typical examples. These applications come from the areas of machine diagnostics, fault detection, illness identification or, in principle, refer to any problem where little knowledge is available outside the typical class. In this paper we explain why proximities are natural representations for domain descriptors and we propose a simple one-class classifier for dissimilarity representations. By the use of linear programming an efficient one-class description can be found, based on a small number of prototype objects. This classifier can be made (1) more robust by transforming the dissimilarities and (2) cheaper to compute by using a reduced representation set. Finally, a comparison to a comparable one-class classifier by Campbell and Bennett is given.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found