Learning Monotonic Transformations for Classification
–Neural Information Processing Systems
A discriminative method is proposed for learning monotonic transformations of the training data while jointly estimating a large-margin classifier. In many domains such as document classification, image histogram classification and gene microarray experiments, fixed monotonic transformations can be useful as a preprocessing step. However, most classifiers only explore these transformations through manual trial and error or via prior domain knowledge. The proposed method learns monotonic transformations automatically while training a large-margin classifier without any prior knowledge of the domain. A monotonic piecewise linear function is learned which transforms data for subsequent processing by a linear hyperplane classifier. Two algorithmic implementations of the method are formalized. The first solves a convergent alternating sequence of quadratic and linear programs until it obtains a locally optimal solution. An improved algorithm is then derived using a convex semidefinite relaxation that overcomes initialization issues in the greedy optimization problem. The effectiveness of these learned transformations on synthetic problems, text data and image data is demonstrated.
Neural Information Processing Systems
Dec-31-2008