Jebara, Tony
Active Multitask Learning with Committees
Xu, Jingxi, Tang, Da, Jebara, Tony
The cost of annotating training data has traditionally been a bottleneck for supervised learning approaches. The problem is further exacerbated when supervised learning is applied to a number of correlated tasks simultaneously since the amount of labels required scales with the number of tasks. To mitigate this concern, we propose an active multitask learning algorithm that achieves knowledge transfer between tasks. The approach forms a so-called committee for each task that jointly makes decisions and directly shares data across similar tasks. Our approach reduces the number of queries needed during training while maintaining high accuracy on test data. Empirical results on benchmark datasets show significant improvements on both accuracy and number of query requests.
Learning Correlated Latent Representations with Adaptive Priors
Tang, Da, Liang, Dawen, Ruozzi, Nicholas, Jebara, Tony
Variational Auto-Encoders (VAEs) have been widely applied for learning compact low-dimensional latent representations for high-dimensional data. When the correlation structure among data points is available, previous work proposed Correlated Variational Auto-Encoders (CVAEs) which employ a structured mixture model as prior and a structured variational posterior for each mixture component to enforce the learned latent representations to follow the same correlation structure. However, as we demonstrate in this paper, such a choice can not guarantee that CVAEs can capture all of the correlations. Furthermore, it prevents us from obtaining a tractable joint and marginal variational distribution. To address these issues, we propose Adaptive Correlated Variational Auto-Encoders (ACVAEs), which apply an adaptive prior distribution that can be adjusted during training, and learn a tractable joint distribution via a saddle-point optimization procedure. Its tractable form also enables further refinement with belief propagation. Experimental results on two real datasets show that ACVAEs outperform other benchmarks significantly.
A New Distribution on the Simplex with Auto-Encoding Applications
Stirn, Andrew, Jebara, Tony, Knowles, David A
We construct a new distribution for the simplex using the Kumaraswamy distribution and an ordered stick-breaking process. We explore and develop the theoretical properties of this new distribution and prove that it exhibits symmetry under the same conditions as the well-known Dirichlet. Like the Dirichlet, the new distribution is adept at capturing sparsity but, unlike the Dirichlet, has an exact and closed form reparameterization--making it well suited for deep variational Bayesian modeling. We demonstrate the distribution's utility in a variety of semi-supervised auto-encoding tasks. In all cases, the resulting models achieve competitive performance commensurate with their simplicity, use of explicit probability models, and abstinence from adversarial training.
Correlated Variational Auto-Encoders
Tang, Da, Liang, Dawen, Jebara, Tony, Ruozzi, Nicholas
Variational Auto-Encoders (VAEs) are capable of learning latent representations for high dimensional data. However, due to the i.i.d. assumption, VAEs only optimize the singleton variational distributions and fail to account for the correlations between data points, which might be crucial for learning latent representations from dataset where a priori we know correlations exist. We propose Correlated Variational Auto-Encoders (CVAEs) that can take the correlation structure into consideration when learning latent representations with VAEs. CVAEs apply a prior based on the correlation structure. To address the intractability introduced by the correlated prior, we develop an approximation by average of a set of tractable lower bounds over all maximal acyclic subgraphs of the undirected correlation graph. Experimental results on matching and link prediction on public benchmark rating datasets and spectral clustering on a synthetic dataset show the effectiveness of the proposed method over baseline algorithms.
Beta Survival Models
Hubbard, David, Rostykus, Benoit, Raimond, Yves, Jebara, Tony
This article analyzes the problem of estimating the time until an event occurs, also known as survival modeling. We observe through substantial experiments on large real-world datasets and use-cases that populations are largely heterogeneous. Sub-populations have different mean and variance in their survival rates requiring flexible models that capture heterogeneity. We leverage a classical extension of the logistic function into the survival setting to characterize unobserved heterogeneity using the beta distribution. This yields insights into the geometry of the problem as well as efficient estimation methods for linear, tree and neural network models that adjust the beta distribution based on observed covariates. We also show that the additional information captured by the beta distribution leads to interesting ranking implications as we determine who is most-at-risk. We show theoretically that the ranking is variable as we forecast forward in time and prove that pairwise comparisons of survival remain transitive. Empirical results using large-scale datasets across two use-cases (online conversions and retention modeling), demonstrate the competitiveness of the method. The simplicity of the method and its ability to capture skew in the data makes it a viable alternative to standard techniques particularly when we are interested in the time to event and when the underlying probabilities are heterogeneous.
Thompson Sampling for Noncompliant Bandits
Stirn, Andrew, Jebara, Tony
Thompson sampling, a Bayesian method for balancing exploration and exploitation in bandit problems, has theoretical guarantees and exhibits strong empirical performance in many domains. Traditional Thompson sampling, however, assumes perfect compliance, where an agent's chosen action is treated as the implemented action. This article introduces a stochastic noncompliance model that relaxes this assumption. We prove that any noncompliance in a 2-armed Bernoulli bandit increases existing regret bounds. With our noncompliance model, we derive Thompson sampling variants that explicitly handle both observed and latent noncompliance. With extensive empirical analysis, we demonstrate that our algorithms either match or outperform traditional Thompson sampling in both compliant and noncompliant environments.
Item Recommendation with Variational Autoencoders and Heterogenous Priors
Karamanolakis, Giannis, Cherian, Kevin Raji, Narayan, Ananth Ravi, Yuan, Jie, Tang, Da, Jebara, Tony
In recent years, Variational Autoencoders (VAEs) have been shown to be highly effective in both standard collaborative filtering applications and extensions such as incorporation of implicit feedback. We extend VAEs to collaborative filtering with side information, for instance when ratings are combined with explicit text feedback from the user. Instead of using a user-agnostic standard Gaussian prior, we incorporate user-dependent priors in the latent VAE space to encode users' preferences as functions of the review text. Taking into account both the rating and the text information to represent users in this multimodal latent space is promising to improve recommendation quality. Our proposed model is shown to outperform the existing VAE models for collaborative filtering (up to 29.41% relative improvement in ranking metric) along with other baselines that incorporate both user ratings and text for item recommendation.
Subgoal Discovery for Hierarchical Dialogue Policy Learning
Tang, Da, Li, Xiujun, Gao, Jianfeng, Wang, Chong, Li, Lihong, Jebara, Tony
Developing conversational agents to engage in complex dialogues is challenging partly because the dialogue policy needs to explore a large state-action space. In this paper, we propose a divide-and-conquer approach that discovers and exploits the hidden structure of the task to enable efficient policy learning. First, given a set of successful dialogue sessions, we present a Subgoal Discovery Network (SDN) to divide a complex goal-oriented task into a set of simpler subgoals in an unsupervised fashion. We then use these subgoals to learn a hierarchical policy which consists of 1) a top-level policy that selects among subgoals, and 2) a low-level policy that selects primitive actions to accomplish the subgoal. We exemplify our method by building a dialogue agent for the composite task of travel planning. Experiments with simulated and real users show that an agent trained with automatically discovered subgoals performs competitively against an agent with human-defined subgoals, and significantly outperforms an agent without subgoals. Moreover, we show that learned subgoals are human comprehensible.
Variational Autoencoders for Collaborative Filtering
Liang, Dawen, Krishnan, Rahul G., Hoffman, Matthew D., Jebara, Tony
We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.
Initialization and Coordinate Optimization for Multi-way Matching
Tang, Da, Jebara, Tony
We consider the problem of consistently matching multiple sets of elements to each other, which is a common task in fields such as computer vision. To solve the underlying NP-hard objective, existing methods often relax or approximate it, but end up with unsatisfying empirical performance due to a misaligned objective. We propose a coordinate update algorithm that directly optimizes the target objective. By using pairwise alignment information to build an undirected graph and initializing the permutation matrices along the edges of its Maximum Spanning Tree, our algorithm successfully avoids bad local optima. Theoretically, with high probability our algorithm guarantees an optimal solution under reasonable noise assumptions. Empirically, our algorithm consistently and significantly outperforms existing methods on several benchmark tasks on real datasets.