A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks
–Neural Information Processing Systems
To make sense of the world our brains must analyze high-dimensional datasets streamed by our sensory organs. Because such analysis begins with dimensionality reduction, modeling early sensory processing requires biologically plausible online dimensionality reduction algorithms. Recently, we derived such an algorithm, termed similarity matching, from a Multidimensional Scaling (MDS) objective function. However, in the existing algorithm, the number of output dimensions is set a priori by the number of output neurons and cannot be changed. Because the number of informative dimensions in sensory inputs is variable there is a need for adaptive dimensionality reduction.
Neural Information Processing Systems
Mar-13-2024, 01:14:30 GMT