A-NICE-MC: Adversarial Training for MCMC

Jiaming Song, Shengjia Zhao, Stefano Ermon

Neural Information Processing Systems 

Existing Markov Chain Monte Carlo (MCMC) methods are either based on generalpurpose and domain-agnostic schemes, which can lead to slow convergence, or problem-specific proposals hand-crafted by an expert. In this paper, we propose A-NICE-MC, a novel method to automatically design efficient Markov chain kernels tailored for a specific domain. First, we propose an efficient likelihood-free adversarial training method to train a Markov chain and mimic a given data distribution. Then, we leverage flexible volume preserving flows to obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train efficient Markov chains to sample from a prescribed posterior distribution by iteratively improving the quality of both the model and the samples. Empirical results demonstrate that A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to significantly outperform competing methods such as Hamiltonian Monte Carlo.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found