Disentangling the Roles of Distinct Cell Classes with Cell-Type Dynamical Systems

Neural Information Processing Systems 

Latent dynamical systems have been widely used to characterize the dynamics of neural population activity in the brain. However, these models typically ignore the fact that the brain contains multiple cell types. This limits their ability to capture the functional roles of distinct cell classes, and to predict the effects of cell-specific perturbations on neural activity or behavior. To overcome these limitations, we introduce the "cell-type dynamical systems" (CTDS) model. This model extends latent linear dynamical systems to contain distinct latent variables for each cell class, with biologically inspired constraints on both dynamics and emissions.