Learning Curves for Gaussian Processes

Sollich, Peter

Neural Information Processing Systems 

I consider the problem of calculating learning curves (i.e., average generalization performance) of Gaussian processes used for regression. A simple expression for the generalization error in terms of the eigenvalue decomposition of the covariance function is derived, and used as the starting point for several approximation schemes. I identify where these become exact, and compare with existing bounds on learning curves; the new approximations, which can be used for any input space dimension, generally get substantially closer to the truth. 1 INTRODUCTION: GAUSSIAN PROCESSES Within the neural networks community, there has in the last few years been a good deal of excitement about the use of Gaussian processes as an alternative to feedforward networks [lJ. The advantages of Gaussian processes are that prior assumptions about the problem to be learned are encoded in a very transparent way, and that inference-at least in the case of regression that I will consider-is relatively straightforward. One crucial question for applications is then how'fast' Gaussian processes learn, i.e., how many training examples are needed to achieve a certain level of generalization performance.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found