Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks

Neural Information Processing Systems 

The field of neuromorphic computing promises extremely low-power and lowlatency sensing and processing. Challenges in transferring learning algorithms from traditional artificial neural networks (ANNs) to spiking neural networks (SNNs) have so far prevented their application to large-scale, complex regression tasks. Furthermore, realizing a truly asynchronous and fully neuromorphic pipeline that maximally attains the abovementioned benefits involves rethinking the way in which this pipeline takes in and accumulates information. In the case of perception, spikes would be passed as-is and one-by-one between an event camera and an SNN, meaning all temporal integration of information must happen inside the network. In this article, we tackle these two problems. We focus on the complex task of learning to estimate optical flow from event-based camera inputs in a self-supervised manner, and modify the state-of-the-art ANN training pipeline to encode minimal temporal information in its inputs.