Dual Space Gradient Descent for Online Learning

Neural Information Processing Systems 

One crucial goal in kernel online learning is to bound the model size. Common approaches employ budget maintenance procedures to restrict the model sizes using removal, projection, or merging strategies. Although projection and merging, in the literature, are known to be the most effective strategies, they demand extensive computation whilst removal strategy fails to retain information of the removed vectors. An alternative way to address the model size problem is to apply random features to approximate the kernel function. This allows the model to be maintained directly in the random feature space, hence effectively resolve the curse of kernelization. However, this approach still suffers from a serious shortcoming as it needs to use a high dimensional random feature space to achieve a sufficiently accurate kernel approximation.