Complex-Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation
Mel, Bartlett W., Ruderman, Daniel L., Archie, Kevin A.
–Neural Information Processing Systems
Biophysical modeling studies have previously shown that cortical pyramidal cells driven by strong NMDA-type synaptic currents and/or containing dendritic voltage-dependent Ca or Na channels, respond more strongly when synapses are activated in several spatially clustered groups of optimal size-in comparison to the same number of synapses activated diffusely about the dendritic arbor [8]- The nonlinear intradendritic interactions giving rise to this "cluster sensitivity" property are akin to a layer of virtual nonlinear "hidden units" in the dendrites, with implications for the cellular basis of learning and memory [7, 6], and for certain classes of nonlinear sensory processing [8]- In the present study, we show that a single neuron, with access only to excitatory inputs from unoriented ONand OFFcenter cells in the LGN, exhibits the principal nonlinear response properties of a "complex" cell in primary visual cortex, namely orientation tuning coupled with translation invariance and contrast insensitivity_ We conjecture that this type of intradendritic processing could explain how complex cell responses can persist in the absence of oriented simple cell input [13]- 84 B. W. Mel, D. L. Ruderman and K. A. Archie
Neural Information Processing Systems
Dec-31-1997
- Country:
- North America > United States > California > Los Angeles County > Los Angeles (0.15)
- Industry:
- Health & Medicine > Therapeutic Area > Neurology (0.37)
- Technology: