Multi-Level Human-Autonomy Teams for Distributed Mission Management
Voshell, Martin (Charles River Analytics) | Tittle, James (Charles River Analytics) | Roth, Emilie ( Roth Cognitive Engineering )
Control of the air in envisioned large-scale battles against near-peer adversaries will require revolutionary new approaches to airborne mission management, where decision authority and platform autonomy are dynamically delegated and functional roles and combat capabilities are assigned across multiple distributed tiers of platforms and human operators. System capabilities range from traditional airborne battle managers, to manned tactical aviators, to autonomous unmanned aerial systems. Due to the overwhelming complexity, human operators will require the assistance of advanced autonomy decision aids with new mechanisms for operator supervision and management of teams of manned and unmanned systems. In this paper we describe a conceptual distributed mission management approach that employs novel human-automation teaming constructs to address the complexity of envisioned operations in highly contested environments. We then discuss a cognitive engineering approach to designing roleand task-tailored human machine interfaces between humans and the autonomous systems. We conclude with a discussion of multi-level evaluation approaches for experimentation.
Mar-16-2016