Dissect Black Box: Interpreting for Rule-Based Explanations in Unsupervised Anomaly Detection, Nengwu Wu, Qing Li

Neural Information Processing Systems 

In high-stakes sectors such as network security, IoT security, accurately distinguishing between normal and anomalous data is critical due to the significant implications for operational success and safety in decision-making. The complexity is exacerbated by the presence of unlabeled data and the opaque nature of black-box anomaly detection models, which obscure the rationale behind their predictions. In this paper, we present a novel method to interpret the decision-making processes of these models, which are essential for detecting malicious activities without labeled attack data. We put forward the Segmentation Clustering Decision Tree (SCD-Tree), designed to dissect and understand the structure of normal data distributions.