Modeling the Modulatory Effect of Attention on Human Spatial Vision

Itti, Laurent, Braun, Jochen, Koch, Christof

Neural Information Processing Systems 

We present new simulation results, in which a computational model of interacting visual neurons simultaneously predicts the modulation of spatial vision thresholds by focal visual attention, for five dual-task human psychophysics experiments. This new study complements our previous findings that attention activates a winnertake-all competition among early visual neurons within one cortical hypercolumn. This "intensified competition" hypothesis assumed that attention equally affects all neurons, and yielded two singleunit predictions: an increase in gain and a sharpening of tuning with attention. While both effects have been separately observed in electrophysiology, no single-unit study has yet shown them simultaneously. Hence, we here explore whether our model could still predict our data if attention might only modulate neuronal gain, but do so non-uniformly across neurons and tasks. Specifically, we investigate whether modulating the gain of only the neurons that are loudest, best-tuned, or most informative about the stimulus, or of all neurons equally but in a task-dependent manner, may account for the data. We find that none of these hypotheses yields predictions as plausible as the intensified competition hypothesis, hence providing additional support for our original findings.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found