Very loopy belief propagation for unwrapping phase images

Frey, Brendan J., Koetter, Ralf, Petrovic, Nemanja

Neural Information Processing Systems 

Since the discovery that the best error-correcting decoding algorithm can be viewed as belief propagation in a cycle-bound graph, researchers have been trying to determine under what circumstances "loopy belief propagation" is effective for probabilistic inference. Despite several theoretical advances in our understanding of loopy belief propagation, to our knowledge, the only problem that has been solved using loopy belief propagation is error-correcting decoding on Gaussian channels. We propose a new representation for the two-dimensional phase unwrapping problem, and we show that loopy belief propagation produces results that are superior to existing techniques. This is an important result, since many imaging techniques, including magnetic resonance imaging and interferometric synthetic aperture radar, produce phase-wrapped images. Interestingly, the graph that we use has a very large number of very short cycles, supporting evidence that a large minimum cycle length is not needed for excellent results using belief propagation. 1 Introduction Phase unwrapping is an easily stated, fundamental problem in image processing (Ghiglia and Pritt 1998).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found