The Perceptron Algorithm Is Fast for Non-Malicious Distributions
–Neural Information Processing Systems
Interest in this algorithm waned in the 1970's after it was emphasized[Minsky and Papert, 1969] (1) that the class of problems solvable by a single half space was limited, and (2) that the Perceptron algorithm, although converging in finite time, did not converge in polynomial time. In the 1980's, however, it has become evident that there is no hope of providing a learning algorithm which can learn arbitrary functions in polynomial time and much research has thus been restricted to algorithms which learn a function drawn from a particular class of functions. Moreover, learning theory has focused on protocols like that of [Valiant, 1984] where we seek to classify, not a fixed set of examples, but examples drawn from a probability distribution. This allows a natural notion of "generalization". There are very few classes which have yet been proven learnable in polynomial time, and one of these is the class of half spaces. Thus there is considerable theoretical interest now in studying the problem of learning a single half space, and so it is natural to reexamine the Percept ron algorithm within the formalism of Valiant.
Neural Information Processing Systems
Dec-31-1990