Adaptive Overfitting for Neural Shape Editing
–Neural Information Processing Systems
Neural representations are popular for representing shapes, as they can be learned form sensor data and used for data cleanup, model completion, shape editing, and shape synthesis. Current neural representations can be categorized as either overfitting to a single object instance, or representing a collection of objects. However, neither allows accurate editing of neural scene representations: on the one hand, methods that overfit objects achieve highly accurate reconstructions, but do not generalize to unseen object configurations and thus cannot support editing; on the other hand, methods that represent a family of objects with variations do generalize but produce only approximate reconstructions.
Neural Information Processing Systems
May-30-2025, 11:52:01 GMT