On Efficient Heuristic Ranking of Hypotheses

Chien, Steve A., Stechert, Andre, Mutz, Darren

Neural Information Processing Systems 

Voice: (818) 306-6144 FAX: (818) 306-6912 Content Areas: Applications (Stochastic Optimization),Model Selection Algorithms Abstract This paper considers the problem of learning the ranking of a set of alternatives based upon incomplete information (e.g., a limited number of observations). We describe two algorithms for hypothesis ranking and their application for probably approximately correct (PAC) and expected loss (EL) learning criteria. Empirical results are provided to demonstrate the effectiveness of these ranking procedures on both synthetic datasets and real-world data from a spacecraft design optimization problem. 1 INTRODUCTION In many learning applications, the cost of information can be quite high, imposing a requirement that the learning algorithms glean as much usable information as possible with a minimum of data. For example: - In speedup learning, the expense of processing each training example can be significant [Tadepalli921. This paper provides a statistical decision-theoretic framework for the ranking of parametric distributions.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found