Towards Learning Group-Equivariant Features for Domain Adaptive 3D Detection Sangyun Shin Yuhang He

Neural Information Processing Systems 

The performance of 3D object detection in large outdoor point clouds deteriorates significantly in an unseen environment due to the inter-domain gap. To address these challenges, most existing methods for domain adaptation harness self-training schemes and attempt to bridge the gap by focusing on a single factor that causes the inter-domain gap, such as objects' sizes, shapes, and foreground density variation. However, the resulting adaptations suggest that there is still a substantial inter-domain gap left to be minimized. We argue that this is due to two limitations: 1) Biased pseudo-label collection from self-training.