Dynamic Behavior of Constained Back-Propagation Networks
–Neural Information Processing Systems
It is generally admitted that generalization performance of back-propagation networks (Rumelhart, Hinton & Williams, 1986) will depend on the relative size ofthe training data and of the trained network. By analogy to curve-fitting and for theoretical considerations, the generalization performance of the network should decrease as the size of the network and the associated number of degrees of freedom increase (Rumelhart, 1987; Denker et al., 1987; Hanson & Pratt, 1989). This paper examines the dynamics of the standard back-propagation algorithm (BP) and of a constrained back-propagation variation (CBP), designed to adapt the size of the network to the training data base. The performance, learning dynamics and the representations resulting from the two algorithms are compared.
Neural Information Processing Systems
Dec-31-1990
- Country:
- North America > United States > California > Santa Clara County (0.16)
- Genre:
- Research Report (0.34)
- Technology: