An Incremental Nearest Neighbor Algorithm with Queries

Ratsaby, Joel

Neural Information Processing Systems 

We consider the general problem of learning multi-category classification from labeled examples. We present experimental results for a nearest neighbor algorithm which actively selects samples from different pattern classes according to a querying rule instead of the a priori class probabilities. The amount of improvement of this query-based approach over the passive batch approach depends on the complexity of the Bayes rule. The principle on which this algorithm is based is general enough to be used in any learning algorithm which permits a model-selection criterion and for which the error rate of the classifier is calculable in terms of the complexity of the model. 1 INTRODUCTION We consider the general problem of learning multi-category classification from labeled examples. In many practical learning settings the time or sample size available for training are limited. This may have adverse effects on the accuracy of the resulting classifier. For instance, in learning to recognize handwritten characters typical time limitation confines the training sample size to be of the order of a few hundred examples. It is important to make learning more efficient by obtaining only training data which contains significant information about the separability of the pattern classes thereby letting the learning algorithm participate actively in the sampling process. Querying for the class labels of specificly selected examples in the input space may lead to significant improvements in the generalization error (cf.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found