Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao, Evan W. Archer, Liam Paninski, John P. Cunningham
–Neural Information Processing Systems
A body of recent work in modeling neural activity focuses on recovering lowdimensional latent features that capture the statistical structure of large-scale neural populations. Most such approaches have focused on linear generative models, where inference is computationally tractable. Here, we propose fLDS, a general class of nonlinear generative models that permits the firing rate of each neuron to vary as an arbitrary smooth function of a latent, linear dynamical state. This extra flexibility allows the model to capture a richer set of neural variability than a purely linear model, but retains an easily visualizable low-dimensional latent space. To fit this class of non-conjugate models we propose a variational inference scheme, along with a novel approximate posterior capable of capturing rich temporal correlations across time. We show that our techniques permit inference in a wide class of generative models.We also show in application to two neural datasets that, compared to state-of-the-art neural population models, fLDS captures a much larger proportion of neural variability with a small number of latent dimensions, providing superior predictive performance and interpretability.
Neural Information Processing Systems
Jan-20-2025, 13:25:42 GMT
- Country:
- North America > United States (0.28)
- Industry:
- Health & Medicine > Therapeutic Area > Neurology (0.94)
- Technology: