Algorithms and hardness results for parallel large margin learning

Neural Information Processing Systems 

We study the fundamental problem of learning an unknown large-margin halfspace in the context of parallel computation. Our main positive result is a parallel algorithm for learning a large-margin halfspace that is based on interior point methods from convex optimization and fast parallel algorithms for matrix computations. We show that this algorithm learns an unknown γ-margin halfspace over n dimensions using poly(n, 1/γ) processors and runs in time Õ(1/γ) + O(log n).