Technology
Lg Depth Estimation and Ripple Fire Characterization Using Artificial Neural Networks
Perry, John L., Baumgardt, Douglas R.
This srudy has demonstrated how artificial neural networks (ANNs) can be used to characterize seismic sources using high-frequency regional seismic data. We have taken the novel approach of using ANNs as a research tool for obtaining seismic source information, specifically depth of focus for earthquakes and ripple-fire characteristics for economic blasts, rather than as just a feature classifier between earthquake and explosion populations. Overall, we have found that ANNs have potential applications to seismic event characterization and identification, beyond just as a feature classifier. In future studies, these techniques should be applied to actual data of regional seismic events recorded at the new regional seismic arrays. The results of this study indicates that an ANN should be evaluated as part of an operational seismic event identification system. 1 INTRODUCTION ANNs have usually been used as pattern matching algorithms, and recent studies have applied ANNs to standard classification between classes of earthquakes and explosions using wavefonn features (Dowla, et al, 1989), (Dysart and Pulli, 1990).
A Recurrent Neural Network for Word Identification from Continuous Phoneme Strings
Allen, Robert B., Kamm, Candace A.
A neural network architecture was designed for locating word boundaries and identifying words from phoneme sequences. This architecture was tested in three sets of studies. First, a highly redundant corpus with a restricted vocabulary was generated and the network was trained with a limited number of phonemic variations for the words in the corpus. Tests of network performance on a transfer set yielded a very low error rate. In a second study, a network was trained to identify words from expert transcriptions of speech.
Analog Neural Networks as Decoders
Erlanson, Ruth, Abu-Mostafa, Yaser
In turn, KWTA networks can be used as decoders of a class of nonlinear error-correcting codes. By interconnecting such KWTA networks, we can construct decoders capable of decoding more powerful codes. We consider several families of interconnected KWTA networks, analyze their performance in terms of coding theory metrics, and consider the feasibility of embedding such networks in VLSI technologies.
Rapidly Adapting Artificial Neural Networks for Autonomous Navigation
Dean A. Pomerleau School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract The ALVINN (Autonomous Land Vehicle In a Neural Network) project addresses the problem of training artificial neural networks in real time to perform difficult perception tasks. ALVINN,is a back-propagation network that uses inputs from a video camera and an imaging laser rangefinder to drive the CMU Navlab, a modified Chevy van. This paper describes training techniques which allow ALVINN to learn in under 5 minutes to autonomously control the Navlab by watching a human driver's response to new situations. Using these techniques, ALVINN has been trained to drive in a variety of circumstances including single-lane paved and unpaved roads, multilane lined and unlined roads, and obstacle-ridden on-and off-road environments, at speeds of up to 20 miles per hour. 1 INTRODUCTION Previous trainable connectionist perception systems have often ignored important aspects of the form and content of available sensor data. Because of the assumed impracticality of training networks to perform realistic high level perception tasks, connectionist researchers have frequently restricted their task domains to either toy problems (e.g. the TC identification problem [11] [6]) or fixed low level operations (e.g.
Development and Spatial Structure of Cortical Feature Maps: A Model Study
Obermayer, Klaus, Ritter, Helge, Schulten, Klaus
Feature selective cells in the primary visual cortex of several species are organized in hierarchical topographic maps of stimulus features like "position in visual space", "orientation" and" ocular dominance". In order to understand and describe their spatial structure and their development, we investigate a self-organizing neural network model based on the feature map algorithm. The model explains map formation as a dimension-reducing mapping from a high-dimensional feature space onto a two-dimensional lattice, such that "similarity" between features (or feature combinations) is translated into "spatial proximity" between the corresponding feature selective cells. The model is able to reproduce several aspects of the spatial structure of cortical maps in the visual cortex. 1 Introduction Cortical maps are functionally defined structures of the cortex, which are characterized by an ordered spatial distribution of functionally specialized cells along the cortical surface. In the primary visual area(s) the response properties of these cells must be described by several independent features, and there is a strong tendency to map combinations of these features onto the cortical surface in a way that translates "similarity" into "spatial proximity" of the corresponding feature selective cells (see e.g.
A Short-Term Memory Architecture for the Learning of Morphophonemic Rules
In the debate over the power of connectionist models to handle linguistic phenomena, considerable attention has been focused on the learning of simple morphological rules. It is a straightforward matter in a symbolic system to specify how the meanings of a stem and a bound morpheme combine to yield the meaning of a whole word and how the form of the bound morpheme depends on the shape of the stem. In a distributed connectionist system, however, where there may be no explicit morphemes, words, or rules, things are not so simple. The most important work in this area has been that of Rumelhart and McClelland (1986), together with later extensions by Marchman and Plunkett (1989). The networks involved were trained to associate English verb stems with the corresponding past-tense forms, successfully generating both regular and irregular forms and generalizing to novel inputs.
On Stochastic Complexity and Admissible Models for Neural Network Classifiers
For a detailed rationale the reader is referred to the work of Rissanen (1984) or Wallace and Freeman (1987) and the references therein. Note that the Minimum Description Length (MDL) technique (as Rissanen's approach has become known) is implicitly related to Maximum A Posteriori (MAP) Bayesian estimation techniques if cast in the appropriate framework.