Goto

Collaborating Authors

 Technology


Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra

Neural Information Processing Systems

A system has been developed to extract diagnostic information from jet engine carcass vibration data. Support Vector Machines applied to novelty detection provide a measure of how unusual the shape of a vibration signature is, by learning a representation of normality. We describe a novel method for Support Vector Machines of including information from a second class for novelty detection and give results from the application to Jet Engine vibration analysis.


Sparse Representation for Gaussian Process Models

Neural Information Processing Systems

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world data sets indicate the efficiency of the approach.


Dopamine Bonuses

Neural Information Processing Systems

Substantial data support a temporal difference (TO) model of dopamine (OA) neuron activity in which the cells provide a global error signal for reinforcement learning. However, in certain circumstances, OA activity seems anomalous under the TO model, responding to non-rewarding stimuli. We address these anomalies by suggesting that OA cells multiplex information about reward bonuses, including Sutton's exploration bonuses and Ng et al's non-distorting shaping bonuses. We interpret this additional role for OA in terms of the unconditional attentional and psychomotor effects of dopamine, having the computational role of guiding exploration. 1 Introduction Much evidence suggests that dopamine cells in the primate midbrain play an important role in reward and action learning. Electrophysiological studies support a theory that OA cells signal a global prediction error for summed future reward in appetitive conditioning tasks (Montague et al, 1996; Schultz et al, 1997), in the form of a temporal difference prediction error term.


Second Order Approximations for Probability Models

Neural Information Processing Systems

In this paper, we derive a second order mean field theory for directed graphical probability models. By using an information theoretic argument it is shown how this can be done in the absense of a partition function. This method is a direct generalisation of the well-known TAP approximation for Boltzmann Machines. In a numerical example, it is shown that the method greatly improves the first order mean field approximation. For a restricted class of graphical models, so-called single overlap graphs, the second order method has comparable complexity to the first order method. For sigmoid belief networks, the method is shown to be particularly fast and effective.


A Linear Programming Approach to Novelty Detection

Neural Information Processing Systems

Novelty detection involves modeling the normal behaviour of a system hence enabling detection of any divergence from normality. It has potential applications in many areas such as detection of machine damage or highlighting abnormal features in medical data. One approach is to build a hypothesis estimating the support of the normal data i.e. constructing a function which is positive in the region where the data is located and negative elsewhere. Recently kernel methods have been proposed for estimating the support of a distribution and they have performed well in practice - training involves solution of a quadratic programming problem. In this paper we propose a simpler kernel method for estimating the support based on linear programming. The method is easy to implement and can learn large datasets rapidly. We demonstrate the method on medical and fault detection datasets.



From Margin to Sparsity

Neural Information Processing Systems

We present an improvement of Novikoff's perceptron convergence theorem. Reinterpreting this mistake bound as a margin dependent sparsity guarantee allows us to give a PACstyle generalisation error bound for the classifier learned by the perceptron learning algorithm. The bound value crucially depends on the margin a support vector machine would achieve on the same data set using the same kernel. Ironically, the bound yields better guarantees than are currently available for the support vector solution itself.


Noise Suppression Based on Neurophysiologically-motivated SNR Estimation for Robust Speech Recognition

Neural Information Processing Systems

For SNR-estimation, the input signal is transformed into so-called Amplitude Modulation Spectrograms (AMS), which represent both spectral and temporal characteristics of the respective analysis frame, and which imitate the representation of modulation frequencies in higher stages of the mammalian auditory system. A neural network is used to analyse AMS patterns generated from noisy speech and estimates the local SNR. Noise suppression is achieved by attenuating frequency channels according to their SNR. The noise suppression algorithm is evaluated in speakerindependent digit recognition experiments and compared to noise suppression by Spectral Subtraction. 1 Introduction One of the major problems in automatic speech recognition (ASR) systems is their lack of robustness in noise, which severely degrades their usefulness in many practical applications. Several proposals have been made to increase the robustness of ASR systems, e.g. by model compensation or more noise-robust feature extraction [1, 2]. Another method to increase robustness of ASR systems is to suppress the background noise before feature extraction. Classical approaches for single-channel noise suppression are Spectral Subtraction [3] and related schemes, e.g.


Error-correcting Codes on a Bethe-like Lattice

Neural Information Processing Systems

We analyze Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as an extremization of a proper free-energy. We find a thermodynamic phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.


Redundancy and Dimensionality Reduction in Sparse-Distributed Representations of Natural Objects in Terms of Their Local Features

Neural Information Processing Systems

Low-dimensional representations are key to solving problems in highlevel vision, such as face compression and recognition. Factorial coding strategies for reducing the redundancy present in natural images on the basis of their second-order statistics have been successful in accounting for both psychophysical and neurophysiological properties of early vision. Class-specific representations are presumably formed later, at the higher-level stages of cortical processing. Here we show that when retinotopic factorial codes are derived for ensembles of natural objects, such as human faces, not only redundancy, but also dimensionality is reduced. We also show that objects are built from parts in a non-Gaussian fashion which allows these local-feature codes to have dimensionalities that are substantially lower than the respective Nyquist sampling rates.