Anomaly Detection


Unsupervised Distribution Learning for Lunar Surface Anomaly Detection

#artificialintelligence

In this work we show that modern data-driven machine learning techniques can be successfully applied on lunar surface remote sensing data to learn, in an unsupervised way, sufficiently good representations of the data distribution to enable lunar technosignature and anomaly detection. In particular we train an unsupervised distribution learning neural network model to find the Apollo 15 landing module in a testing dataset, with no dataset specific model or hyperparameter tuning. Sufficiently good unsupervised data density estimation has the promise of enabling myriad useful downstream tasks, including locating lunar resources for future space flight and colonization, finding new impact craters or lunar surface reshaping, and algorithmically deciding the importance of unlabeled samples to send back from power- and bandwidth-constrained missions. We show in this work that such unsupervised learning can be successfully done in the lunar remote sensing and space science contexts. Please follow SpaceRef on Twitter and Like us on Facebook.


Anomaly Detection with Score functions based on Nearest Neighbor Graphs

Neural Information Processing Systems

We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on score functions derived from nearest neighbor graphs on n-point nominal data. Anomalies are declared whenever the score of a test sample falls below q, which is supposed to be the desired false alarm level. The resulting anomaly detector is shown to be asymptotically optimal in that it is uniformly most powerful for the specified false alarm level, q, for the case when the anomaly density is a mixture of the nominal and a known density. Our algorithm is computationally efficient, being linear in dimension and quadratic in data size. It does not require choosing complicated tuning parameters or function approximation classes and it can adapt to local structure such as local change in dimensionality.


Multi-criteria Anomaly Detection using Pareto Depth Analysis

Neural Information Processing Systems

We consider the problem of identifying patterns in a data set that exhibit anomalous behavior, often referred to as anomaly detection. In most anomaly detection algorithms, the dissimilarity between data samples is calculated by a single criterion, such as Euclidean distance. However, in many cases there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such a case, multiple criteria can be defined, and one can test for anomalies by scalarizing the multiple criteria by taking some linear combination of them. If the importance of the different criteria are not known in advance, the algorithm may need to be executed multiple times with different choices of weights in the linear combination.


PIDForest: Anomaly Detection via Partial Identification

Neural Information Processing Systems

We consider the problem of detecting anomalies in a large dataset. We propose a framework called Partial Identification which captures the intuition that anomalies are easy to distinguish from the overwhelming majority of points by relatively few attribute values. Formalizing this intuition, we propose a geometric anomaly measure for a point that we call PIDScore, which measures the minimum density of data points over all subcubes containing the point. We present PIDForest: a random forest based algorithm that finds anomalies based on this definition. We show that it performs favorably in comparison to several popular anomaly detection methods, across a broad range of benchmarks.


Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection

Neural Information Processing Systems

Nearest-neighbor (NN) procedures are well studied and widely used in both supervised and unsupervised learning problems. In this paper we are concerned with investigating the performance of NN-based methods for anomaly detection. We first show through extensive simulations that NN methods compare favorably to some of the other state-of-the-art algorithms for anomaly detection based on a set of benchmark synthetic datasets. We further consider the performance of NN methods on real datasets, and relate it to the dimensionality of the problem. Next, we analyze the theoretical properties of NN-methods for anomaly detection by studying a more general quantity called distance-to-measure (DTM), originally developed in the literature on robust geometric and topological inference.


Deep Anomaly Detection Using Geometric Transformations

Neural Information Processing Systems

We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a normal'' class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.


Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic

Neural Information Processing Systems

The detection of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. Beyond its wide applicability, graph structured anomaly detection serves as a case study in the difficulty of balancing computational complexity with statistical power. In this work, we develop from first principles the generalized likelihood ratio test for determining if there is a well connected region of activation over the vertices in the graph in Gaussian noise. Because this test is computationally infeasible, we provide a relaxation, called the Lov\'asz extended scan statistic (LESS) that uses submodularity to approximate the intractable generalized likelihood ratio. We demonstrate a connection between LESS and maximum a-posteriori inference in Markov random fields, which provides us with a poly-time algorithm for LESS.


Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models

Neural Information Processing Systems

We propose probabilistic latent variable models for multi-view anomaly detection, which is the task of finding instances that have inconsistent views given multi-view data. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different views are generated from different latent vectors. By inferring the number of latent vectors used for each instance with Dirichlet process priors, we obtain multi-view anomaly scores. The proposed model can be seen as a robust extension of probabilistic canonical correlation analysis for noisy multi-view data.


Discovering 135 Nights of Sleep with Data, Anomaly Detection, and Time Series

#artificialintelligence

In this article, I look at data from 135 nights of sleep and use anomaly detection and time series data to understand the results. Three things are certain in life: death, taxes, and sleeping. Every night*, us humans, after a long day of roaming this Earth, are greeted with Hypnos' kiss and slowly fall asleep. While doing so, our minds restore, heal, and if we're lucky, it might invite us to live our wildest adventures through dreams, or in a nightmare that we'd wish to forget. But do you know what else happens?


Anomaly Detection

#artificialintelligence

Anomaly detection can be termed as a technique, which is deployed to identify various unusual patterns, which are not in collation with the expected behavior of the data. These unnatural occurrences are also termed as outliners. The application of Anomaly detection starts with the involvement of the business intrusion aspect in business, where it identifies unnatural patterns within the network traffic, which can eventually signal a system hack. Another field where Anomaly detection is deployed is the health monitoring which is based on a system. It can help with the function of detecting a malignant tumor through an MRI scan.