Goto

Collaborating Authors

 Face Recognition


Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning Jun-Yan He4 Jingdong Sun 3

Neural Information Processing Systems

Accurate emotion perception is crucial for various applications, including humancomputer interaction, education, and counseling. However, traditional singlemodality approaches often fail to capture the complexity of real-world emotional expressions, which are inherently multimodal.


Mitigating Biases in Blackbox Feature Extractors for Image Classification Tasks

Neural Information Processing Systems

In image classification, it is common to utilize a pretrained model to extract meaningful features of the input images, and then to train a classifier on top of it to make predictions for any downstream task. Trained on enormous amounts of data, these models have been shown to contain harmful biases which can hurt their performance when adapted for a downstream classification task. Further, very often they may be blackbox, either due to scale, or because of unavailability of model weights or architecture. Thus, during a downstream task, we cannot debias such models by updating the weights of the feature encoder, as only the classifier can be finetuned. In this regard, we investigate the suitability of some existing debiasing techniques and thereby motivate the need for more focused research towards this problem setting. Furthermore, we propose a simple method consisting of a clustering-based adaptive margin loss with a blackbox feature encoder, with no knowledge of the bias attribute. Our experiments demonstrate the effectiveness of our method across multiple benchmarks.


Learning to Decouple the Lights for 3D Face Texture Modeling Tianxin Huang Ying Tai 2

Neural Information Processing Systems

Existing research has made impressive strides in reconstructing human facial shapes and textures from images with well-illuminated faces and minimal external occlusions. Nevertheless, it remains challenging to recover accurate facial textures from scenarios with complicated illumination affected by external occlusions, e.g. a face that is partially obscured by items such as a hat. Existing works based on the assumption of single and uniform illumination cannot correctly process these data. In this work, we introduce a novel approach to model 3D facial textures under such unnatural illumination. Instead of assuming single illumination, our framework learns to imitate the unnatural illumination as a composition of multiple separate light conditions combined with learned neural representations, named Light Decoupling. According to experiments on both single images and video sequences, we demonstrate the effectiveness of our approach in modeling facial textures under challenging illumination affected by occlusions.


ID-to-3D: Expressive ID-guided 3D Heads via Score Distillation Sampling

Neural Information Processing Systems

We propose ID-to-3D, a method to generate identity-and text-guided 3D human heads with disentangled expressions, starting from even a single casually captured in-the-wild image of a subject. The foundation of our approach is anchored in compositionality, alongside the use of task-specific 2D diffusion models as priors for optimization. First, we extend a foundational model with a lightweight expression-aware and ID-aware architecture, and create 2D priors for geometry and texture generation, via fine-tuning only 0.2% of its available training parameters.


Benchmark Data Repositories for Better Benchmarking Rachel Longjohn 1

Neural Information Processing Systems

In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for--and levies criticisms at--data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these benchmark data repositories and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning.


SpeechForensics: Audio-Visual Speech Representation Learning for Face Forgery Detection 1,2 Gang Li

Neural Information Processing Systems

Detection of face forgery videos remains a formidable challenge in the field of digital forensics, especially the generalization to unseen datasets and common perturbations. In this paper, we tackle this issue by leveraging the synergy between audio and visual speech elements, embarking on a novel approach through audiovisual speech representation learning. Our work is motivated by the finding that audio signals, enriched with speech content, can provide precise information effectively reflecting facial movements. To this end, we first learn precise audio-visual speech representations on real videos via a self-supervised masked prediction task, which encodes both local and global semantic information simultaneously. Then, the derived model is directly transferred to the forgery detection task. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of cross-dataset generalization and robustness, without the participation of any fake video in model training. The code is available here.


FuseAnyPart: Diffusion-Driven Facial Parts Swapping via Multiple Reference Images

Neural Information Processing Systems

Figure 1: Results of facial parts swapping using the proposed FuseAnyPart at 512 512 resolution. The swapped face (central image) is generated by fusing the original face (top-left image) with three facial part reference images (bottom-left, top-right, bottom-right). Notably, FuseAnyPart can seamlessly blend facial parts from multiple reference images with significant differences in appearance, producing high-fidelity and natural-looking swapped faces.


ReF-LDM: A Latent Diffusion Model for Reference-based Face Image Restoration Chi-Wei Hsiao

Neural Information Processing Systems

While recent works on blind face image restoration have successfully produced impressive high-quality (HQ) images with abundant details from low-quality (LQ) input images, the generated content may not accurately reflect the real appearance of a person. To address this problem, incorporating well-shot personal images as additional reference inputs could be a promising strategy. Inspired by the recent success of the Latent Diffusion Model (LDM), we propose ReF-LDM--an adaptation of LDM designed to generate HQ face images conditioned on one LQ image and multiple HQ reference images. Our model integrates an effective and efficient mechanism, CacheKV, to leverage the reference images during the generation process. Additionally, we design a timestep-scaled identity loss, enabling our LDM-based model to focus on learning the discriminating features of human faces. Lastly, we construct FFHQ-Ref, a dataset consisting of 20,405 high-quality (HQ) face images with corresponding reference images, which can serve as both training and evaluation data for reference-based face restoration models.


Predicting Label Distribution from Ternary Labels

Neural Information Processing Systems

Label distribution learning is a powerful learning paradigm to deal with label polysemy and has been widely applied in many practical tasks. A significant obstacle to the effective utilization of label distribution is the substantial expenses of accurate quantifying the label distributions. To tackle this challenge, label enhancement methods automatically infer label distributions from more easily accessible multi-label data based on binary annotations. However, the binary annotation of multi-label data requires experts to accurately assess whether each label can describe the instance, which may diminish the annotating efficiency and heighten the risk of erroneous annotation since the relationship between the label and the instance is unclear in many practical scenarios. Therefore, we propose to predict label distribution from ternary labels, allowing experts to annotate labels in a three-way annotation scheme.


Perceptual Fairness in Image Restoration

Neural Information Processing Systems

Fairness in image restoration tasks is the desire to treat different sub-groups of images equally well. Existing definitions of fairness in image restoration are highly restrictive. They consider a reconstruction to be a correct outcome for a group (e.g., women) only if it falls within the group's set of ground truth images (e.g., natural images of women); otherwise, it is considered entirely incorrect. Consequently, such definitions are prone to controversy, as errors in image restoration can manifest in various ways. In this work we offer an alternative approach towards fairness in image restoration, by considering the Group Perceptual Index (GPI), which we define as the statistical distance between the distribution of the group's ground truth images and the distribution of their reconstructions. We assess the fairness of an algorithm by comparing the GPI of different groups, and say that it achieves perfect Perceptual Fairness (PF) if the GPIs of all groups are identical. We motivate and theoretically study our new notion of fairness, draw its connection to previous ones, and demonstrate its utility on state-of-the-art face image restoration algorithms.