Goto

Collaborating Authors

 Speech Recognition


RealMAN: A Real-Recorded and Annotated Microphone Array Dataset for Dynamic Speech Enhancement and Localization

Neural Information Processing Systems

The training of deep learning-based multichannel speech enhancement and source localization systems relies heavily on the simulation of room impulse response and multichannel diffuse noise, due to the lack of large-scale real-recorded datasets.


SILENCE: Lightweight Protection for Privacy in Offloaded Speech Understanding

Neural Information Processing Systems

Speech serves as a ubiquitous input interface for embedded mobile devices. Cloud-based solutions, while offering powerful speech understanding services, raise significant concerns regarding user privacy. To address this, disentanglement-based encoders have been proposed to remove sensitive information from speech signals without compromising the speech understanding functionality. However, these encoders demand high memory usage and computation complexity, making them impractical for resource-constrained wimpy devices. Our solution is based on a key observation that speech understanding hinges on long-term dependency knowledge of the entire utterance, in contrast to privacysensitive elements that are short-term dependent. Exploiting this observation, we propose SILENCE, a lightweight system that selectively obscuring short-term details, without damaging the long-term dependent speech understanding performance. The crucial part of SILENCE is a differential mask generator derived from interpretable learning to automatically configure the masking process. We have implemented SILENCE on the STM32H7 microcontroller and evaluate its efficacy under different attacking scenarios. Our results demonstrate that SILENCE offers speech understanding performance and privacy protection capacity comparable to existing encoders, while achieving up to 53.3 speedup and 134.1 reduction in memory footprint.


SCOREQ: Speech Quality Assessment with Contrastive Regression

Neural Information Processing Systems

SCOREQ is a triplet loss function for contrastive regression that addresses the domain generalisation shortcoming exhibited by state of the art no-reference speech quality metrics. In the paper we: (i) illustrate the problem of L2 loss training failing at capturing the continuous nature of the mean opinion score (MOS) labels; (ii) demonstrate the lack of generalisation through a benchmarking evaluation across several speech domains; (iii) outline our approach and explore the impact of the architectural design decisions through incremental evaluation; (iv) evaluate the final model against state of the art models for a wide variety of data and domains. The results show that the lack of generalisation observed in state of the art speech quality metrics is addressed by SCOREQ. We conclude that using a triplet loss function for contrastive regression improves generalisation for speech quality prediction models but also has potential utility across a wide range of applications using regression-based predictive models.


SSDM: Scalable Speech Dysfluency Modeling

Neural Information Processing Systems

Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions [1, 2] suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose SSDM: Scalable Speech Dysfluency Modeling, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a largescale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling.


Aligner-Encoders: Self-Attention Transformers Can Be Self-Transducers

Neural Information Processing Systems

Modern systems for automatic speech recognition, including the RNN-Transducer and Attention-based Encoder-Decoder (AED), are designed so that the encoder is not required to alter the time-position of information from the audio sequence into the embedding; alignment to the final text output is processed during decoding. We discover that the transformer-based encoder adopted in recent years is actually capable of performing the alignment internally during the forward pass, prior to decoding. This new phenomenon enables a simpler and more efficient model, the "Aligner-Encoder". To train it, we discard the dynamic programming of RNN-T in favor of the frame-wise cross-entropy loss of AED, while the decoder employs the lighter text-only recurrence of RNN-T without learned cross-attention--it simply scans embedding frames in order from the beginning, producing one token each until predicting the end-of-message. We conduct experiments demonstrating performance remarkably close to the state of the art, including a special inference configuration enabling long-form recognition. In a representative comparison, we measure the total inference time for our model to be 2x faster than RNN-T and 16x faster than AED. Lastly, we find that the audio-text alignment is clearly visible in the self-attention weights of a certain layer, which could be said to perform "self-transduction".


CoVoMix: Advancing Zero-Shot Speech Generation for Human-like Multi-talker Conversations Long Zhou

Neural Information Processing Systems

Recent advancements in zero-shot text-to-speech (TTS) modeling have led to significant strides in generating high-fidelity and diverse speech. However, dialogue generation, along with achieving human-like naturalness in speech, continues to be a challenge. In this paper, we introduce CoVoMix: Conversational Voice Mixture Generation, a novel model for zero-shot, human-like, multi-speaker, multi-round dialogue speech generation. CoVoMix first converts dialogue text into multiple streams of discrete tokens, with each token stream representing semantic information for individual talkers. These token streams are then fed into a flow-matching based acoustic model to generate mixed mel-spectrograms. Finally, the speech waveforms are produced using a HiFi-GAN model.


emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography

Neural Information Processing Systems

Surface electromyography (sEMG) non-invasively measures signals generated by muscle activity with sufficient sensitivity to detect individual spinal neurons and richness to identify dozens of gestures and their nuances. Wearable wrist-based sEMG sensors have the potential to offer low friction, subtle, information rich, always available human-computer inputs.


Whispering in Amharic: Fine-tuning Whisper for Low-resource Language

arXiv.org Artificial Intelligence

This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.


7dfcaf4512bbf2a807a783b90afb6c09-Paper-Datasets_and_Benchmarks_Track.pdf

Neural Information Processing Systems

Recent advancements in text-to-speech (TTS) synthesis show that large-scale models trained with extensive web data produce highly natural-sounding output. However, such data is scarce for Indian languages due to the lack of high-quality, manually subtitled data on platforms like LibriVox or YouTube. To address this gap, we enhance existing large-scale ASR datasets containing natural conversations collected in low-quality environments to generate high-quality TTS training data. Our pipeline leverages the cross-lingual generalization of denoising and speech enhancement models trained on English and applied to Indian languages. This results in IndicVoices-R (IV-R), the largest multilingual Indian TTS dataset derived from an ASR dataset, with 1,704 hours of high-quality speech from 10,496 speakers across 22 Indian languages.


BIGOS V2 Benchmark for Polish ASR: Curated Datasets and Tools for Reproducible Evaluation

Neural Information Processing Systems

Speech datasets available in the public domain are often underutilized because of challenges in accessibility and interoperability. To address this, a system to survey, catalog, and curate existing speech datasets was developed, enabling reproducible evaluation of automatic speech recognition (ASR) systems. The system was applied to curate over 24 datasets and evaluate 25 ASR models, with a specific focus on Polish. This research represents the most extensive comparison to date of commercial and free ASR systems for the Polish language, drawing insights from 600 system-model-test set evaluations across 8 analysis scenarios. Curated datasets and benchmark results are available publicly.