Speech Recognition
7dfcaf4512bbf2a807a783b90afb6c09-Paper-Datasets_and_Benchmarks_Track.pdf
Recent advancements in text-to-speech (TTS) synthesis show that large-scale models trained with extensive web data produce highly natural-sounding output. However, such data is scarce for Indian languages due to the lack of high-quality, manually subtitled data on platforms like LibriVox or YouTube. To address this gap, we enhance existing large-scale ASR datasets containing natural conversations collected in low-quality environments to generate high-quality TTS training data. Our pipeline leverages the cross-lingual generalization of denoising and speech enhancement models trained on English and applied to Indian languages. This results in IndicVoices-R (IV-R), the largest multilingual Indian TTS dataset derived from an ASR dataset, with 1,704 hours of high-quality speech from 10,496 speakers across 22 Indian languages.
Star Temporal Classification: Sequence Modeling with Partially Labeled Data
We develop an algorithm which can learn from partially labeled and unsegmented sequential data. Most sequential loss functions, such as Connectionist Temporal Classification (CTC), break down when many labels are missing. We address this problem with Star Temporal Classification (STC) which uses a special star token to allow alignments which include all possible tokens whenever a token could be missing. We express STC as the composition of weighted finite-state transducers (WFSTs) and use GTN (a framework for automatic differentiation with WFSTs) to compute gradients. We perform extensive experiments on automatic speech recognition. These experiments show that STC can close the performance gap with supervised baseline to about 1% WER when up to 70% of the labels are missing. We also perform experiments in handwriting recognition to show that our method easily applies to other sequence classification tasks.
BIGOS V2 Benchmark for Polish ASR: Curated Datasets and Tools for Reproducible Evaluation
Speech datasets available in the public domain are often underutilized because of challenges in accessibility and interoperability. To address this, a system to survey, catalog, and curate existing speech datasets was developed, enabling reproducible evaluation of automatic speech recognition (ASR) systems. The system was applied to curate over 24 datasets and evaluate 25 ASR models, with a specific focus on Polish. This research represents the most extensive comparison to date of commercial and free ASR systems for the Polish language, drawing insights from 600 system-model-test set evaluations across 8 analysis scenarios. Curated datasets and benchmark results are available publicly.
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words
Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation.
Separate and Reconstruct: Asymmetric Encoder-Decoder for Speech Separation
In speech separation, time-domain approaches have successfully replaced the time-frequency domain with latent sequence feature from a learnable encoder. Conventionally, the feature is separated into speaker-specific ones at the final stage of the network. Instead, we propose a more intuitive strategy that separates features earlier by expanding the feature sequence to the number of speakers as an extra dimension. To achieve this, an asymmetric strategy is presented in which the encoder and decoder are partitioned to perform distinct processing in separation tasks. The encoder analyzes features, and the output of the encoder is split into the number of speakers to be separated.
SpeechAlign: Aligning Speech Generation to Human Preferences Dong Zhang
Speech language models have significantly advanced in generating realistic speech, with neural codec language models standing out. However, the integration of preference optimization to align speech outputs to human preferences is often neglected. This paper addresses this gap by first analyzing the distribution gap in codec language models, highlighting how it leads to discrepancies between the training and inference phases, which negatively affects performance. Then we explore leveraging preference optimization to bridge the distribution gap. We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences. SpeechAlign involves constructing a preference codec dataset contrasting golden codec tokens against synthetic tokens, followed by preference optimization to improve the codec language model. This cycle of improvement is carried out iteratively to steadily convert weak models to strong ones. Through both subjective and objective evaluations, we show that SpeechAlign can bridge the distribution gap and facilitating continuous selfimprovement of the speech language model. Moreover, SpeechAlign exhibits robust generalization capabilities and works for smaller models.
CA-SSLR: Condition-Aware Self-Supervised Learning Representation for Generalized Speech Processing Yen-Ju Lu, Laureano Moro-Velazquez
We introduce Condition-Aware Self-Supervised Learning Representation (CA-SSLR), a generalist conditioning model broadly applicable to various speechprocessing tasks. Compared to standard fine-tuning methods that optimize for downstream models, CA-SSLR integrates language and speaker embeddings from earlier layers, making the SSL model aware of the current language and speaker context. This approach reduces the reliance on the input audio features while preserving the integrity of the base SSLR. CA-SSLR improves the model's capabilities and demonstrates its generality on unseen tasks with minimal task-specific tuning. Our method employs linear modulation to dynamically adjust internal representations, enabling fine-grained adaptability without significantly altering the original model behavior. Experiments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting, and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves a 10% relative reduction in LID errors, a 37% improvement in ASR CER on the ML-SUPERB benchmark, and a 27% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.
Self-Supervised Normalization for Non-autoregressive Speech-to-speech Translation
Non-autoregressive Transformers (NATs) are recently applied in direct speech-tospeech translation systems, which convert speech across different languages without intermediate text data. Although NATs generate high-quality outputs and offer faster inference than autoregressive models, they tend to produce incoherent and repetitive results due to complex data distribution (e.g., acoustic and linguistic variations in speech).
Language Without Borders: A Dataset and Benchmark for Code-Switching Lip Reading
Lip reading aims at transforming the videos of continuous lip movement into textual contents, and has achieved significant progress over the past decade. It serves as a critical yet practical assistance for speech-impaired individuals, with more practicability than speech recognition in noisy environments. With the increasing interpersonal communications in social media owing to globalization, the existing monolingual datasets for lip reading may not be sufficient to meet the exponential proliferation of bilingual and even multilingual users. However, to our best knowledge, research on code-switching is only explored in speech recognition, while the attempts in lip reading are seriously neglected. To bridge this gap, we have collected a bilingual code-switching lip reading benchmark composed of Chinese and English, dubbed CSLR.
Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models Chen Chen 1, Chao-Han Huck Yang 2
We propose an unsupervised adaptation framework, Self-TAught Recognizer (STAR), which leverages unlabeled data to enhance the robustness of automatic speech recognition (ASR) systems in diverse target domains, such as noise and accents. STAR is developed for prevalent speech foundation models based on Transformer-related architecture with auto-regressive decoding (e.g., Whisper, Canary; SeamlessM4T). Specifically, we propose a novel indicator that empirically integrates step-wise information during decoding to assess the token-level quality of pseudo labels without ground truth, thereby guiding model updates for effective unsupervised adaptation. Experimental results show that STAR achieves an average of 13.5% relative reduction in word error rate across 14 target domains, and it sometimes even approaches the upper-bound performance of supervised adaptation. Meanwhile, we observe that STAR prevents the adapted model from the catastrophic forgetting problem without recalling source-domain data. Furthermore, STAR exhibits high data efficiency that only requires less than one-hour unlabeled data, and seamless generality to alternative large speech models in recognition and translation tasks.