Goto

Collaborating Authors

Speech Recognition: Instructional Materials


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.


Zoom meetings: You can now add live captions to your call – and they actually work

ZDNet

And there's a pretty broad range of people that this will be helpful to." "It's definitely a great help for people with a hearing disability, but also for international, distributed workforces who don't speak English as their native language. And education as well: online classes could benefit from captions, on top of the Live Notes that they can go back to, to facilitate learning." The transcription is not exactly pitch perfect: some sentences don't make sense and words occasionally come up deformed.


Building custom language models to supercharge speech-to-text performance for Amazon Transcribe

#artificialintelligence

Amazon Transcribe is a fully-managed automatic speech recognition service (ASR) that makes it easy to add speech-to-text capabilities to voice-enabled applications. As our service grows, so does the diversity of our customer base, which now spans domains such as insurance, finance, law, real estate, media, hospitality, and more. Naturally, customers in different market segments have asked Amazon Transcribe for more customization options to further enhance transcription performance. We're excited to introduce Custom Language Models (CLM). The new feature allows you to submit a corpus of text data to train custom language models that target domain-specific use cases. Using CLM is easy because it capitalizes on existing data that you already possess (such as marketing assets, website content, and training manuals). In this post, we show you how to best use your available data to train a custom language model tailored for your speech-to-text use case. Although our walkthrough uses a transcription example from the video gaming industry, you can use CLM to enhance custom speech recognition for any domain of your choosing. This post assumes that you're already familiar with how to use Amazon Transcribe, and focuses on demonstrating how to use the new CLM feature.


Arduino Machine Learning: Build a Tensorflow lite model to control robot-car

#artificialintelligence

This tutorial covers how to use Machine Learning with Arduino. The aim of this tutorial is to build a voice controlled car from scratch that uses Tensorflow Machine Learning to recognize voice commands. To do it we will use Arduino Nano 33 BLE sense. The availability of the Tensorflow lite for microcontrollers makes it possible to run machine learning algorithms on microcontrollers such as Arduino. In this tutorial, we will build a Tensorflow model that recognizes voice commands.


AutoClip: Adaptive Gradient Clipping for Source Separation Networks

arXiv.org Machine Learning

Clipping the gradient is a known approach to improving gradient descent, but requires hand selection of a clipping threshold hyperparameter. We present AutoClip, a simple method for automatically and adaptively choosing a gradient clipping threshold, based on the history of gradient norms observed during training. Experimental results show that applying AutoClip results in improved generalization performance for audio source separation networks. Observation of the training dynamics of a separation network trained with and without AutoClip show that AutoClip guides optimization into smoother parts of the loss landscape. AutoClip is very simple to implement and can be integrated readily into a variety of applications across multiple domains.


Complete Machine Learning with R Studio - ML for 2020

#artificialintelligence

Online Courses Udemy - Complete Machine Learning with R Studio - ML for 2020, Linear & Logistic Regression, Decision Trees, XGBoost, SVM & other ML models in R programming language - R studio 4.1 (41 ratings), Created by Start-Tech Academy, English [Auto-generated] Preview this Udemy course -. GET COUPON CODE Description In this course we will learn and practice all the services of AWS Machine Learning which is being offered by AWS Cloud. There will be both theoretical and practical section of each AWS Machine Learning services.This course is for those who loves machine learning and would build application based on cognitive computing, AI and ML. You could integrate these services in your Web, Android, IoT, Desktop Applications like Face Detection, ChatBot, Voice Detection, Text to custom Speech (with pitch, emotions, etc), Speech to text, Sentimental Analysis on Social media or any textual data. Machine Learning Services like- Amazon Sagemaker to build, train, and deploy machine learning models at scale Amazon Comprehend for natural Language processing and text analytics Amazon Lex for conversational interfaces for your applications powered by the same deep learning technologies as Alexa Amazon Polly to turn text into lifelike speech using deep learning Object and scene detection,Image moderation,Facial analysis,Celebrity recognition,Face comparison,Text in image and many more Amazon Transcribe for automatic speech recognition Amazon Translate for natural and accurate language translation As Machine learning and cloud computing are trending topic and also have lot of job opportunities If you have interest in machine learning as well as cloud computing then this course for you.


Step By Step Guide To Create Your Own Speech Classifier

#artificialintelligence

Text classification is one of the most common problems in natural language processing. In the past few years, there have been numerous successful attempts which gave rise to many state-of-the-art language models capable of performing classification tasks with accuracy and precision. Text classification powers many real-world applications -- from simple spam filtering to voice assistants like Alexa. These applications have the capability to classify the user's input to understand the context of spoken words. In this article, we will build on the basic idea of giving the machine the power to listen to human speech and classify what the person is talking about.


Complete Machine Learning Bootcamp

#artificialintelligence

In this course we will learn and practice all the services of AWS Machine Learning which is being offered by AWS Cloud. There will be both theoretical and practical section of each AWS Machine Learning services.This course is for those who loves machine learning and would build application based on cognitive computing, AI and ML. You could integrate these services in your Web, Android, IoT, Desktop Applications like Face Detection, ChatBot, Voice Detection, Text to custom Speech (with pitch, emotions, etc), Speech to text, Sentimental Analysis on Social media or any textual data. If you have interest in machine learning as well as cloud computing then this course for you. This course will let you use your machine learning skills deploy in cloud.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


From Caesar Cipher to Unsupervised Learning: A New Method for Classifier Parameter Estimation

arXiv.org Machine Learning

Many important classification problems, such as object classification, speech recognition, and machine translation, have been tackled by the supervised learning paradigm in the past, where training corpora of parallel input-output pairs are required with high cost. To remove the need for the parallel training corpora has practical significance for real-world applications, and it is one of the main goals of unsupervised learning. Recently, encouraging progress in unsupervised learning for solving such classification problems has been made and the nature of the challenges has been clarified. In this article, we review this progress and disseminate a class of promising new methods to facilitate understanding the methods for machine learning researchers. In particular, we emphasize the key information that enables the success of unsupervised learning - the sequential statistics as the distributional prior in the labels. Exploitation of such sequential statistics makes it possible to estimate parameters of classifiers without the need of paired input-output data. In this paper, we first introduce the concept of Caesar Cipher and its decryption, which motivated the construction of the novel loss function for unsupervised learning we use throughout the paper. Then we use a simple but representative binary classification task as an example to derive and describe the unsupervised learning algorithm in a step-by-step, easy-to-understand fashion. We include two cases, one with Bigram language model as the sequential statistics for use in unsupervised parameter estimation, and another with a simpler Unigram language model. For both cases, detailed derivation steps for the learning algorithm are included. Further, a summary table compares computational steps of the two cases in executing the unsupervised learning algorithm for learning binary classifiers.