Goto

Collaborating Authors

 Robot Planning & Action


Distortion Bounds of Subdivision Models for SO(3)

arXiv.org Artificial Intelligence

In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.


AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World

arXiv.org Artificial Intelligence

Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.



The motion planning neural circuit in goal-directed navigation as Lie group operator search

Neural Information Processing Systems

The information processing in the brain and embodied agents form a sensory-action loop to interact with the world. An important step in the loop is motion planning which selects motor actions based on the current world state and task need. In goal-directed navigation, the brain chooses and generates motor actions to bring the current state into the goal state. It is unclear about the neural circuit mechanism of motor action selection, nor its underlying theory. The present study formulates the motion planning as a Lie group operator search problem, and uses the 1D rotation group as an example to provide insight into general operator search in neural circuits.


Multi-Robot Coordination Under Physical Limitations

arXiv.org Artificial Intelligence

Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.


Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

Neural Information Processing Systems

Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theoretical guarantees in Bayesian optimization are often regrettably compromised in practice because of unknown parameters in the prior. In this paper, we adopt a variant of empirical Bayes and show that, by estimating the Gaussian process prior from offline data sampled from the same prior and constructing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement achieve a near-zero regret bound, which decreases to a constant proportional to the observational noise as the number of offline data and the number of online evaluations increase. Empirically, we have verified our approach on challenging simulated robotic problems featuring task and motion planning.


Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation

arXiv.org Artificial Intelligence

-- When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls. Off-road navigation presents various challenges that sharply contrast those encountered in on-road or indoor scenarios. In unstructured off-road environments, robots must detect and avoid obstacles, evaluate the traversability of varied terrain, and continuously adapt to complex vehicle-terrain interactions. Tackling all these challenges is essential to prevent terminal states that can jeopardize the mission and damage the robot, such as vehicle rollover and getting stuck.



A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements

arXiv.org Artificial Intelligence

This study presents a physics-informed machine learning-based control method for nonlinear dynamic systems with highly noisy measurements. Existing data-driven control methods that use machine learning for system identification cannot effectively cope with highly noisy measurements, resulting in unstable control performance. To address this challenge, the present study extends current physics-informed machine learning capabilities for modeling nonlinear dynamics with control and integrates them into a model predictive control framework. To demonstrate the capability of the proposed method we test and validate with two noisy nonlinear dynamic systems: the chaotic Lorenz 3 system, and turning machine tool. Analysis of the results illustrate that the proposed method outperforms state-of-the-art benchmarks as measured by both modeling accuracy and control performance for nonlinear dynamic systems under high-noise conditions.


Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

Robohub

Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move. Robert Siddall is an aerospace engineer with an enthusiasm for unconventional robotics. He is interested in understanding animal locomotion for the benefit of synthetic locomotion, particularly flight. Before becoming a Lecturer at the University of Surrey, he worked at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany, where he studied the arboreal acrobatics of rainforest-dwelling reptiles. His work focuses on the design of novel robots that can tackle important environmental problems.