Fuzzy Logic


On Convergence Rate of Adaptive Multiscale Value Function Approximation For Reinforcement Learning

arXiv.org Machine Learning

In this paper, we propose a generic framework for devising an adaptive approximation scheme for value function approximation in reinforcement learning, which introduces multiscale approximation. The two basic ingredients are multiresolution analysis as well as tree approximation. Starting from simple refinable functions, multiresolution analysis enables us to construct a wavelet system from which the basis functions are selected adaptively, resulting in a tree structure. Furthermore, we present the convergence rate of our multiscale approximation which does not depend on the regularity of basis functions.


Optimize TSK Fuzzy Systems for Big Data Classification Problems: Bag of Tricks

arXiv.org Machine Learning

Takagi-Sugeno-Kang (TSK) fuzzy systems are flexible and interpretable machine learning models; however, they may not be easily applicable to big data problems, especially when the size and the dimensionality of the data are both large. This paper proposes a mini-batch gradient descent (MBGD) based algorithm to efficiently and effectively train TSK fuzzy systems for big data classification problems. It integrates three novel techniques: 1) uniform regularization (UR), which is a regularization term added to the loss function to make sure the rules have similar average firing levels, and hence better generalization performance; 2) random percentile initialization (RPI), which initializes the membership function parameters efficiently and reliably; and, 3) batch normalization (BN), which extends BN from deep neural networks to TSK fuzzy systems to speedup the convergence and improve generalization. Experiments on nine datasets from various application domains, with varying size and feature dimensionality, demonstrated that each of UR, RPI and BN has its own unique advantages, and integrating all three together can achieve the best classification performance.


Deep Gaussian networks for function approximation on data defined manifolds

arXiv.org Machine Learning

In much of the literature on function approximation by deep networks, the function is assumed to be defined on some known domain, such as a cube or sphere. In practice, the data might not be dense on these domains, and therefore, the approximation theory results are observed to be too conservative. In manifold learning, one assumes instead that the data is sampled from an unknown manifold; i.e., the manifold is defined by the data itself. Function approximation on this unknown manifold is then a two stage procedure: first, one approximates the Laplace-Beltrami operator (and its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target function using the eigen-functions. In this paper, we propose a more direct approach to function approximation on unknown, data defined manifolds without computing the eigen-decomposition of some operator, and estimate the degree of approximation in terms of the manifold dimension. This leads to similar results in function approximation using deep networks where each channel evaluates a Gaussian network on a possibly unknown manifold.


Kernels on fuzzy sets: an overview

arXiv.org Artificial Intelligence

This paper introduces the concept of kernels on fuzzy sets as a similarity measure for $[0,1]$-valued functions, a.k.a. \emph{membership functions of fuzzy sets}. We defined the following classes of kernels: the cross product, the intersection, the non-singleton and the distance-based kernels on fuzzy sets. Applicability of those kernels are on machine learning and data science tasks where uncertainty in data has an ontic or epistemistic interpretation.


Sensitivity study of ANFIS model parameters to predict the pressure gradient with combined input and outputs hydrodynamics parameters in the bubble column reactor

arXiv.org Artificial Intelligence

Intelligent algorithms are recently used in the optimization process in chemical engineering and application of multiphase flows such as bubbling flow. This overview of modeling can be a great replacement with complex numerical methods or very time-consuming and disruptive measurement experimental process. In this study, we develop the adaptive network-based fuzzy inference system (ANFIS) method for mapping inputs and outputs together and understand the behavior of the fluid flow from other output parameters of the bubble column reactor. Neural cells can fully learn the process in their memory and after the training stage, the fuzzy structure predicts the multiphase flow data. Four inputs such as x coordinate, y coordinate, z coordinate, and air superficial velocity and one output such as pressure gradient are considered in the learning process of the ANFIS method. During the learning process, the different number of the membership function, type of membership functions and the number of inputs are examined to achieve the intelligent algorithm with high accuracy. The results show that as the number of inputs increases the accuracy of the ANFIS method rises up to R^2>0.99 almost for all cases, while the increment in the number of rules has a effect on the intelligence of artificial algorithm. This finding shows that the density of neural objects or higher input parameters enables the moded for better understanding. We also proposed a new evaluation of data in the bubble column reactor by mapping inputs and outputs and shuffle all parameters together to understand the behaviour of the multiphase flow as a function of either inputs or outputs. This new process of mapping inputs and outputs data provides a framework to fully understand the flow in the fluid domain in a short time of fuzzy structure calculation.


ParaFIS:A new online fuzzy inference system based on parallel drift anticipation

arXiv.org Artificial Intelligence

This paper proposes a new architecture of incremen-tal fuzzy inference system (also called Evolving Fuzzy System-EFS). In the context of classifying data stream in non stationary environment, concept drifts problems must be addressed. Several studies have shown that EFS can deal with such environment thanks to their high structural flexibility. These EFS perform well with smooth drift (or incremental drift). The new architecture we propose is focused on improving the processing of brutal changes in the data distribution (often called brutal concept drift). More precisely, a generalized EFS is paired with a module of anticipation to improve the adaptation of new rules after a brutal drift. The proposed architecture is evaluated on three datasets from UCI repository where artificial brutal drifts have been applied. A fit model is also proposed to get a "reactivity time" needed to converge to the steady-state and the score at end. Both characteristics are compared between the same system with and without anticipation and with a similar EFS from state-of-the-art. The experiments demonstrates improvements in both cases.


Provably Efficient Reinforcement Learning with Linear Function Approximation

arXiv.org Machine Learning

Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed. This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)---a classical algorithm frequently studied in the linear setting---achieves $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret, where $d$ is the ambient dimension of feature space, $H$ is the length of each episode, and $T$ is the total number of steps. Importantly, such regret is independent of the number of states and actions.


Measuring Inter-group Agreement on zSlice Based General Type-2 Fuzzy Sets

arXiv.org Artificial Intelligence

Recently, there has been much research into modelling of uncertainty in human perception through Fuzzy Sets (FSs). Most of this research has focused on allowing respondents to express their (intra) uncertainty using intervals. Here, depending on the technique used and types of uncertainties being modelled different types of FSs can be obtained (e.g., Type-1, Interval Type-2, General Type-2). Arguably, one of the most flexible techniques is the Interval Agreement Approach (IAA) as it allows to model the perception of all respondents without making assumptions such as outlier removal or predefined membership function types (e.g. Gaussian). A key aspect in the analysis of interval-valued data and indeed, IAA based agreement models of said data, is to determine the position and strengths of agreement across all the sources/participants. While previously, the Agreement Ratio was proposed to measure the strength of agreement in fuzzy set based models of interval data, said measure has only been applicable to type-1 fuzzy sets. In this paper, we extend the Agreement Ratio to capture the degree of inter-group agreement modelled by a General Type-2 Fuzzy Set when using the IAA. This measure relies on using a similarity measure to quantitatively express the relation between the different levels of agreement in a given FS. Synthetic examples are provided in order to demonstrate both behaviour and calculation of the measure. Finally, an application to real-world data is provided in order to show the potential of this measure to assess the divergence of opinions for ambiguous concepts when heterogeneous groups of participants are involved.


Recommendations on Designing Practical Interval Type-2 Fuzzy Systems

arXiv.org Artificial Intelligence

Interval type-2 (IT2) fuzzy systems have become increasingly popular in the last 20 years. They have demonstrated superior performance in many applications. However, the operation of an IT2 fuzzy system is more complex than that of its type-1 counterpart. There are many questions to be answered in designing an IT2 fuzzy system: Should singleton or non-singleton fuzzifier be used? How many membership functions (MFs) should be used for each input? Should Gaussian or piecewise linear MFs be used? Should Mamdani or Takagi-Sugeno-Kang (TSK) inference be used? Should minimum or product $t$-norm be used? Should type-reduction be used or not? How to optimize the IT2 fuzzy system? These questions may look overwhelming and confusing to IT2 beginners. In this paper we recommend some representative starting choices for an IT2 fuzzy system design, which hopefully will make IT2 fuzzy systems more accessible to IT2 fuzzy system designers.


Investigating The Piece-Wise Linearity And Benchmark Related To Koczy-Hirota Fuzzy Linear Interpolation

arXiv.org Artificial Intelligence

Fuzzy Rule Interpolation (FRI) reasoning methods have been introduced to address sparse fuzzy rule bases and reduce complexity. The first FRI method was the Koczy and Hirota (KH) proposed "Linear Interpolation". Besides, several conditions and criteria have been suggested for unifying the common requirements FRI methods have to satisfy. One of the most conditions is restricted the fuzzy set of the conclusion must preserve a Piece-Wise Linearity (PWL) if all antecedents and consequents of the fuzzy rules are preserving on PWL sets at {\alpha}-cut levels. The KH FRI is one of FRI methods which cannot satisfy this condition. Therefore, the goal of this paper is to investigate equations and notations related to PWL property, which is aimed to highlight the problematic properties of the KH FRI method to prove its efficiency with PWL condition. In addition, this paper is focusing on constructing benchmark examples to be a baseline for testing other FRI methods against situations that are not satisfied with the linearity condition for KH FRI.