Fuzzy Logic


Sketch-Based Linear Value Function Approximation

Neural Information Processing Systems

Hashing is a common method to reduce large, potentially infinite feature vectors to a fixed-size table. In reinforcement learning, hashing is often used in conjunction with tile coding to represent states in continuous spaces. Hashing is also a promising approach to value function approximation in large discrete domains such as Go and Hearts, where feature vectors can be constructed by exhaustively combining a set of atomic features. Unfortunately, the typical use of hashing in value function approximation results in biased value estimates due to the possibility of collisions. Recent work in data stream summaries has led to the development of the tug-of-war sketch, an unbiased estimator for approximating inner products.


Convergent Fitted Value Iteration with Linear Function Approximation

Neural Information Processing Systems

Fitted value iteration (FVI) with ordinary least squares regression is known to diverge. We present a new method, "Expansion-Constrained Ordinary Least Squares" (ECOLS), that produces a linear approximation but also guarantees convergence when used with FVI. To ensure convergence, we constrain the least squares regression operator to be a non-expansion in the infinity-norm. We show that the space of function approximators that satisfy this constraint is more rich than the space of "averagers," we prove a minimax property of the ECOLS residual error, and we give an efficient algorithm for computing the coefficients of ECOLS based on constraint generation. We illustrate the algorithmic convergence of FVI with ECOLS in a suite of experiments, and discuss its properties.


Robust Value Function Approximation Using Bilinear Programming

Neural Information Processing Systems

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, it provably finds an approximate value function that minimizes the Bellman residual. Solving a bilinear program optimally is NP hard, but this is unavoidable because the Bellman-residual minimization itself is NP hard. We, therefore, employ and analyze a common approximate algorithm for bilinear programs.


Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation

Neural Information Processing Systems

We introduce the first temporal-difference learning algorithms that converge with smooth value function approximators, such as neural networks. Conventional temporal-difference (TD) methods, such as TD($\lambda$), Q-learning and Sarsa have been used successfully with function approximation in many applications. However, it is well known that off-policy sampling, as well as nonlinear function approximation, can cause these algorithms to become unstable (i.e., the parameters of the approximator may diverge). Sutton et al (2009a,b) solved the problem of off-policy learning with linear TD algorithms by introducing a new objective function, related to the Bellman-error, and algorithms that perform stochastic gradient-descent on this function. In this paper, we generalize their work to nonlinear function approximation.


On the equivalence between graph isomorphism testing and function approximation with GNNs

Neural Information Processing Systems

Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints.


Learning nonlinear level sets for dimensionality reduction in function approximation

Neural Information Processing Systems

We developed a Nonlinear Level-set Learning (NLL) method for dimensionality reduction in high-dimensional function approximation with small data. This work is motivated by a variety of design tasks in real-world engineering applications, where practitioners would replace their computationally intensive physical models (e.g., high-resolution fluid simulators) with fast-to-evaluate predictive machine learning models, so as to accelerate the engineering design processes. There are two major challenges in constructing such predictive models: (a) high-dimensional inputs (e.g., many independent design parameters) and (b) small training data, generated by running extremely time-consuming simulations. Thus, reducing the input dimension is critical to alleviate the over-fitting issue caused by data insufficiency. Existing methods, including sliced inverse regression and active subspace approaches, reduce the input dimension by learning a linear coordinate transformation; our main contribution is to extend the transformation approach to a nonlinear regime.


Weighted importance sampling for off-policy learning with linear function approximation

Neural Information Processing Systems

Importance sampling is an essential component of off-policy model-free reinforcement learning algorithms. However, its most effective variant, \emph{weighted} importance sampling, does not carry over easily to function approximation and, because of this, it is not utilized in existing off-policy learning algorithms. In this paper, we take two steps toward bridging this gap. First, we show that weighted importance sampling can be viewed as a special case of weighting the error of individual training samples, and that this weighting has theoretical and empirical benefits similar to those of weighted importance sampling. Second, we show that these benefits extend to a new weighted-importance-sampling version of off-policy LSTD(lambda).


Finite-Sample Analysis for SARSA with Linear Function Approximation

Neural Information Processing Systems

SARSA is an on-policy algorithm to learn a Markov decision process policy in reinforcement learning. We investigate the SARSA algorithm with linear function approximation under the non-i.i.d.\ setting, where a single sample trajectory is available. With a Lipschitz continuous policy improvement operator that is smooth enough, SARSA has been shown to converge asymptotically. However, its non-asymptotic analysis is challenging and remains unsolved due to the non-i.i.d. In this paper, we develop a novel technique to explicitly characterize the stochastic bias of a type of stochastic approximation procedures with time-varying Markov transition kernels.


Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle

Neural Information Processing Systems

Q-learning with function approximation is one of the most popular methods in reinforcement learning. Though the idea of using function approximation was proposed at least 60 years ago, even in the simplest setup, i.e, approximating Q-functions with linear functions, it is still an open problem how to design a provably efficient algorithm that learns a near-optimal policy. The key challenges are how to efficiently explore the state space and how to decide when to stop exploring in conjunction with the function approximation scheme. The current paper presents a provably efficient algorithm for Q-learning with linear function approximation. Under certain regularity assumptions, our algorithm, Difference Maximization Q-learning, combined with linear function approximation, returns a near-optimal policy using polynomial number of trajectories.


Variance Reduced Policy Evaluation with Smooth Function Approximation

Neural Information Processing Systems

Policy evaluation with smooth and nonlinear function approximation has shown great potential for reinforcement learning. Compared to linear function approxi- mation, it allows for using a richer class of approximation functions such as the neural networks. Traditional algorithms are based on two timescales stochastic approximation whose convergence rate is often slow. This paper focuses on an offline setting where a trajectory of $m$ state-action pairs are observed. We formulate the policy evaluation problem as a non-convex primal-dual, finite-sum optimization problem, whose primal sub-problem is non-convex and dual sub-problem is strongly concave.