Fuzzy Logic
Revisit Fuzzy Neural Network: Demystifying Batch Normalization and ReLU with Generalized Hamming Network
We revisit fuzzy neural network with a cornerstone notion of generalized hamming distance, which provides a novel and theoretically justified framework to re-interpret many useful neural network techniques in terms of fuzzy logic. In particular, we conjecture and empirically illustrate that, the celebrated batch normalization (BN) technique actually adapts the "normalized" bias such that it approximates the rightful bias induced by the generalized hamming distance. Once the due bias is enforced analytically, neither the optimization of bias terms nor the sophisticated batch normalization is needed. Also in the light of generalized hamming distance, the popular rectified linear units (ReLU) can be treated as setting a minimal hamming distance threshold between network inputs and weights. This thresholding scheme, on the one hand, can be improved by introducing double-thresholding on both positive and negative extremes of neuron outputs. On the other hand, ReLUs turn out to be non-essential and can be removed from networks trained for simple tasks like MNIST classification. The proposed generalized hamming network (GHN) as such not only lends itself to rigorous analysis and interpretation within the fuzzy logic theory but also demonstrates fast learning speed, well-controlled behaviour and state-of-the-art performances on a variety of learning tasks.
Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach
Emmanouil Platanios, Hoifung Poon, Tom M. Mitchell, Eric J. Horvitz
We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuition that: (i) when classifiers agree, they are more likely to be correct, and (ii) when the classifiers make a prediction that violates the constraints, at least one classifier must be making an error. Experiments on four real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. Our models also outperform existing state-of-the-art solutions in both estimating accuracies, and combining multiple classifier outputs. The results emphasize the utility of logical constraints in estimating accuracy, thus validating our intuition.
Posterior Sampling for Competitive RL: Function Approximation and Partial Observation
This paper investigates posterior sampling algorithms for competitive reinforcement learning (RL) in the context of general function approximations. Focusing on zero-sum Markov games (MGs) under two critical settings, namely self-play and adversarial learning, we first propose the self-play and adversarial generalized eluder coefficient (GEC) as complexity measures for function approximation, capturing the exploration-exploitation trade-off in MGs. Based on self-play GEC, we propose a model-based self-play posterior sampling method to control both players to learn Nash equilibrium, which can successfully handle the partial observability of states. Furthermore, we identify a set of partially observable MG models fitting MG learning with the adversarial policies of the opponent. Incorporating the adversarial GEC, we propose a model-based posterior sampling method for learning adversarial MG with potential partial observability. We further provide low regret bounds for proposed algorithms that can scale sublinearly with the proposed GEC and the number of episodes T. To the best of our knowledge, we for the first time develop generic model-based posterior sampling algorithms for competitive RL that can be applied to a majority of tractable zero-sum MG classes in both fully observable and partially observable MGs with self-play and adversarial learning.
Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation Nikki Lijing Kuang
Recent studies in reinforcement learning (RL) have made significant progress by leveraging function approximation to alleviate the sample complexity hurdle for better performance. Despite the success, existing provably efficient algorithms typically rely on the accessibility of immediate feedback upon taking actions. The failure to account for the impact of delay in observations can significantly degrade the performance of real-world systems due to the regret blow-up. In this work, we tackle the challenge of delayed feedback in RL with linear function approximation by employing posterior sampling, which has been shown to empirically outperform the popular UCB algorithms in a wide range of regimes. We first introduce Delayed-PSVI, an optimistic value-based algorithm that effectively explores the value function space via noise perturbation with posterior sampling.
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph Xueyuan Lin 1 Haihong E
Multi-hop logical reasoning over knowledge graph plays a fundamental role in many artificial intelligence tasks. Recent complex query embedding methods for reasoning focus on static KGs, while temporal knowledge graphs have not been fully explored. Reasoning over TKGs has two challenges: 1. The query should answer entities or timestamps; 2. The operators should consider both set logic on entity set and temporal logic on timestamp set. To bridge this gap, we introduce the multi-hop logical reasoning problem on TKGs and then propose the first temporal complex query embedding named Temporal Feature-Logic Embedding framework (TFLEX) to answer the temporal complex queries. Specifically, we utilize fuzzy logic to compute the logic part of the Temporal Feature-Logic embedding, thus naturally modeling all first-order logic operations on the entity set. In addition, we further extend fuzzy logic on timestamp set to cope with three extra temporal operators (After, Before and Between). Experiments on numerous query patterns demonstrate the effectiveness of our method.
On the role of overparameterization in off-policy Temporal Difference learning with linear function approximation
Much of the recent successes of deep learning can be attributed to scaling up the size of the networks to the point where they often are vastly overparameterized. Thus, understanding the role of overparameterization is of increasing importance. While predictive theories have been developed for supervised learning, little is known about the Reinforcement Learning case. In this work, we take a theoretical approach and study the role of overparameterization for off-policy Temporal Difference (TD) learning in the linear setting. We leverage tools from random matrix theory and random graph theory to obtain a characterization of the spectrum of the TD operator. We use this result to study the stability and optimization dynamics of TD learning as a function of the number of parameters.
Fuzzy Learning Machine
Classification is one of the most important problems in machine learning and the nature of it is concept cognition. So far, dozens of different classifiers have been designed. Although their working mechanisms vary widely, few of them fully consider concept cognition. In this paper, a new learning machine, fuzzy learning machine (FLM), is proposed from the perspective of concept cognition. Inspired by cognitive science, its working mechanism is of strong interpretability. At the same time, FLM roots in set theory and fuzzy set theory, so FLM has a solid mathematical foundation. The systematic experimental results on a large number of data sets show that FLM can achieve excellent performance, even with the simple implementation.