Semantic Networks

DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs

Neural Information Processing Systems

In this paper, we study the problem of learning probabilistic logical rules for inductive and interpretable link prediction. Despite the importance of inductive link prediction, most previous works focused on transductive link prediction and cannot manage previously unseen entities. Moreover, they are black-box models that are not easily explainable for humans. We propose DRUM, a scalable and differentiable approach for mining first-order logical rules from knowledge graphs that resolves these problems. We motivate our method by making a connection between learning confidence scores for each rule and low-rank tensor approximation.

Assessing Social and Intersectional Biases in Contextualized Word Representations

Neural Information Processing Systems

Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities.

Quaternion Knowledge Graph Embeddings

Neural Information Processing Systems

In this work, we move beyond the traditional complex-valued representations, introducing more expressive hypercomplex representations to model entities and relations for knowledge graph embeddings. More specifically, quaternion embeddings, hypercomplex-valued embeddings with three imaginary components, are utilized to represent entities. Relations are modelled as rotations in the quaternion space. The advantages of the proposed approach are: (1) Latent inter-dependencies (between all components) are aptly captured with Hamilton product, encouraging a more compact interaction between entities and relations; (2) Quaternions enable expressive rotation in four-dimensional space and have more degree of freedom than rotation in complex plane; (3) The proposed framework is a generalization of ComplEx on hypercomplex space while offering better geometrical interpretations, concurrently satisfying the key desiderata of relational representation learning (i.e., modeling symmetry, anti-symmetry and inversion). Experimental results demonstrate that our method achieves state-of-the-art performance on four well-established knowledge graph completion benchmarks.

Knowledge Graphs on the Web -- an Overview Artificial Intelligence

Knowledge Graphs are an emerging form of knowledge representation. While Google coined the term Knowledge Graph first and promoted it as a means to improve their search results, they are used in many applications today. In a knowledge graph, entities in the real world and/or a business domain (e.g., people, places, or events) are represented as nodes, which are connected by edges representing the relations between those entities. While companies such as Google, Microsoft, and Facebook have their own, non-public knowledge graphs, there is also a larger body of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chapter, we provide an overview and comparison of those publicly available knowledge graphs, and give insights into their contents, size, coverage, and overlap.

An Evaluation of Knowledge Graph Embeddings for Autonomous Driving Data: Experience and Practice Artificial Intelligence

The autonomous driving (AD) industry is exploring the use of knowledge graphs (KGs) to manage the vast amount of heterogeneous data generated from vehicular sensors. The various types of equipped sensors include video, LIDAR and RADAR. Scene understanding is an important topic in AD which requires consideration of various aspects of a scene, such as detected objects, events, time and location. Recent work on knowledge graph embeddings (KGEs) - an approach that facilitates neuro-symbolic fusion - has shown to improve the predictive performance of machine learning models. With the expectation that neuro-symbolic fusion through KGEs will improve scene understanding, this research explores the generation and evaluation of KGEs for autonomous driving data. We also present an investigation of the relationship between the level of informational detail in a KG and the quality of its derivative embeddings. By systematically evaluating KGEs along four dimensions -- i.e. quality metrics, KG informational detail, algorithms, and datasets -- we show that (1) higher levels of informational detail in KGs lead to higher quality embeddings, (2) type and relation semantics are better captured by the semantic transitional distance-based TransE algorithm, and (3) some metrics, such as coherence measure, may not be suitable for intrinsically evaluating KGEs in this domain. Additionally, we also present an (early) investigation of the usefulness of KGEs for two use-cases in the AD domain.

The Knowledge Graph Track at OAEI -- Gold Standards, Baselines, and the Golden Hammer Bias Artificial Intelligence

The Ontology Alignment Evaluation Initiative (OAEI) is an annual evaluation of ontology matching tools. In 2018, we have started the Knowledge Graph track, whose goal is to evaluate the simultaneous matching of entities and schemas of large-scale knowledge graphs. In this paper, we discuss the design of the track and two different strategies of gold standard creation. We analyze results and experiences obtained in first editions of the track, and, by revealing a hidden task, we show that all tools submitted to the track (and probably also to other tracks) suffer from a bias which we name the golden hammer bias.

Graph4Code: A Machine Interpretable Knowledge Graph for Code Artificial Intelligence

Knowledge graphs have proven to be extremely useful in powering diverse applications in semantic search, natural language understanding, and even image classification. Graph4Code attempts to build well structured knowledge graphs about program code to similarly revolutionize diverse applications such as code search, code understanding, refactoring, bug detection, and code automation. We build such a graph by applying a set of generic code analysis techniques to Python code on the web. Since use of popular Python modules is ubiquitous in code, calls to functions in Python modules serve as key nodes of the knowledge graph. The edges in the graph are based on 1) function usage in the wild (e.g., which other function tends to call this one, or which function tends to precede this one, as gleaned from program analysis), 2) documentation about the function (e.g., code documentation, usage documentation, or forum discussions such as StackOverflow), and 3) program specific features such as class hierarchies. We use the Whyis knowledge graph management framework to make the graph easily extensible. We apply these techniques to 1.3M Python files drawn from GitHub, and associated documentation on the web for over 400 popular libraries, as well as StackOverflow posts about the same set of libraries. This knowledge graph will be made available soon to the larger community for use.

Scientific Knowledge Graph


In the last decade, we experienced an urgent need for a flexible, context-sensitive, fine-grained, and machine-actionable representation of scholarly knowledge and corresponding infrastructures for knowledge curation, publishing and processing. Such technical infrastructures are becoming increasingly popular in representing scholarly knowledge as structured, interlinked, and semantically rich Scientific Knowledge Graphs (SKG). Knowledge graphs are large networks of entities and relationships, usually expressed in W3C standards such as OWL and RDF. SKGs focus on the scholarly domain and describe the actors (e.g., authors, organizations), the documents (e.g., publications, patents), and the research knowledge (e.g., research topics, tasks, technologies) in this space as well as their reciprocal relationships. These resources provide substantial benefits to researchers, companies, and policymakers by powering several data-driven services for navigating, analysing, and making sense of research dynamics.

Entity Context and Relational Paths for Knowledge Graph Completion Machine Learning

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Human memory search as a random walk in a semantic network

Neural Information Processing Systems

The human mind has a remarkable ability to store a vast amount of information in memory, and an even more remarkable ability to retrieve these experiences when needed. Understanding the representations and algorithms that underlie human memory search could potentially be useful in other information retrieval settings, including internet search. Psychological studies have revealed clear regularities in how people search their memory, with clusters of semantically related items tending to be retrieved together. These findings have recently been taken as evidence that human memory search is similar to animals foraging for food in patchy environments, with people making a rational decision to switch away from a cluster of related information as it becomes depleted. We demonstrate that the results that were taken as evidence for this account also emerge from a random walk on a semantic network, much like the random web surfer model used in internet search engines.