Goto

Collaborating Authors

 Semantic Networks


Knowledge Graph Completion by Intermediate Variables Regularization

Neural Information Processing Systems

Knowledge graph completion (KGC) can be framed as a 3-order binary tensor completion task. Tensor decomposition-based (TDB) models have demonstrated strong performance in KGC. In this paper, we provide a summary of existing TDB models and derive a general form for them, serving as a foundation for further exploration of TDB models. Despite the expressiveness of TDB models, they are prone to overfitting. Existing regularization methods merely minimize the norms of embeddings to regularize the model, leading to suboptimal performance.


Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning

arXiv.org Artificial Intelligence

Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.


Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model

Neural Information Processing Systems

Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges to the efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques integrated with large language models to extract and systematically organize a decade's worth of highquality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated science knowledge graphs.



Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction Haoran Luo

Neural Information Processing Systems

Beyond traditional binary relational facts, n-ary relational knowledge graphs (NKGs) are comprised of n-ary relational facts containing more than two entities, which are closer to real-world facts with broader applications. However, the construction of NKGs remains at a coarse-grained level, which is always in a single schema, ignoring the order and variable arity of entities. To address these restrictions, we propose Text2NKG, a novel fine-grained n-ary relation extraction framework for n-ary relational knowledge graph construction. We introduce a span-tuple classification approach with hetero-ordered merging and output merging to accomplish fine-grained n-ary relation extraction in different arity. Furthermore, Text2NKG supports four typical NKG schemas: hyper-relational schema, event-based schema, role-based schema, and hypergraph-based schema, with high flexibility and practicality.


UKnow: A Unified Knowledge Protocol with Multimodal Knowledge Graph Datasets for Reasoning and Vision-Language Pre-Training Biao Gong

Neural Information Processing Systems

This work presents a unified knowledge protocol, called UKnow, which facilitates knowledge-based studies from the perspective of data. Particularly focusing on visual and linguistic modalities, we categorize data knowledge into five unit types, namely, in-image, in-text, cross-image, cross-text, and image-text, and set up an efficient pipeline to help construct the multimodal knowledge graph from any data collection. Thanks to the logical information naturally contained in knowledge graph, organizing datasets under UKnow format opens up more possibilities of data usage compared to the commonly used image-text pairs. Following UKnow protocol, we collect, from public international news, a large-scale multimodal knowledge graph dataset that consists of 1,388,568 nodes (with 571,791 visionrelated ones) and 3,673,817 triplets. The dataset is also annotated with rich event tags, including 11 coarse labels and 9,185 fine labels. Experiments on 4 benchmarks demonstrate the potential of UKnow in supporting common-sense reasoning and boosting vision-language pre-training with a single dataset, benefiting from its unified form of knowledge organization. See Appendix A to download the dataset.


Clustering then Propagation: Select Better Anchors for Knowledge Graph Embedding 1 Hao Li

Neural Information Processing Systems

Traditional knowledge graph embedding (KGE) models map entities and relations to unique embedding vectors in a shallow lookup manner. As the scale of data becomes larger, this manner will raise unaffordable computational costs. Anchorbased strategies have been treated as effective ways to alleviate such efficiency problems by propagation on representative entities instead of the whole graph. However, most existing anchor-based KGE models select the anchors in a primitive manner, which limits their performance. To this end, we propose a novel anchorbased strategy for KGE, i.e., a relational clustering-based anchor selection strategy (RecPiece), where two characteristics are leveraged, i.e., (1) representative ability of the cluster centroids and (2) descriptive ability of relation types in KGs. Specifically, we first perform clustering over features of factual triplets instead of entities, where cluster number is naturally set as number of relation types since each fact can be characterized by its relation in KGs. Then, representative triplets are selected around the clustering centroids and further mapped into corresponding anchor entities. Extensive experiments on six datasets show that RecPiece achieves higher performances but comparable or even fewer parameters compared to previous anchor-based KGE models, indicating that our model can select better anchors in a more scalable way.


Task-Oriented Automatic Fact-Checking with Frame-Semantics

arXiv.org Artificial Intelligence

We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction.


A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs

Neural Information Processing Systems

Graph neural networks are prominent models for representation learning over graph-structured data. While the capabilities and limitations of these models are well-understood for simple graphs, our understanding remains incomplete in the context of knowledge graphs. Our goal is to provide a systematic understanding of the landscape of graph neural networks for knowledge graphs pertaining to the prominent task of link prediction. Our analysis entails a unifying perspective on seemingly unrelated models and unlocks a series of other models. The expressive power of various models is characterized via a corresponding relational Weisfeiler-Leman algorithm. This analysis is extended to provide a precise logical characterization of the class of functions captured by a class of graph neural networks. The theoretical findings presented in this paper explain the benefits of some widely employed practical design choices, which are validated empirically.


TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph Xueyuan Lin 1 Haihong E

Neural Information Processing Systems

Multi-hop logical reasoning over knowledge graph plays a fundamental role in many artificial intelligence tasks. Recent complex query embedding methods for reasoning focus on static KGs, while temporal knowledge graphs have not been fully explored. Reasoning over TKGs has two challenges: 1. The query should answer entities or timestamps; 2. The operators should consider both set logic on entity set and temporal logic on timestamp set. To bridge this gap, we introduce the multi-hop logical reasoning problem on TKGs and then propose the first temporal complex query embedding named Temporal Feature-Logic Embedding framework (TFLEX) to answer the temporal complex queries. Specifically, we utilize fuzzy logic to compute the logic part of the Temporal Feature-Logic embedding, thus naturally modeling all first-order logic operations on the entity set. In addition, we further extend fuzzy logic on timestamp set to cope with three extra temporal operators (After, Before and Between). Experiments on numerous query patterns demonstrate the effectiveness of our method.