Semantic Networks

Salesforce Research: Knowledge graphs and machine learning to power Einstein


A super geeky topic, which could have super important repercussions in the real world. That description could very well fit anything from cold fusion to knowledge graphs, so a bit of unpacking is in order. If you're into science, chances are you know In other words, it's where cutting edge research often appears first. Some months back, a publication from researchers from Salesforce appeared in arXiv, titled "Multi-Hop Knowledge Graph Reasoning with Reward Shaping."

Interaction Embeddings for Prediction and Explanation in Knowledge Graphs Artificial Intelligence

Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.

Logic Rules Powered Knowledge Graph Embedding Artificial Intelligence

Large scale knowledge graph embedding has attracted much attention from both academia and industry in the field of Artificial Intelligence. However, most existing methods concentrate solely on fact triples contained in the given knowledge graph. Inspired by the fact that logic rules can provide a flexible and declarative language for expressing rich background knowledge, it is natural to integrate logic rules into knowledge graph embedding, to transfer human knowledge to entity and relation embedding, and strengthen the learning process. In this paper, we propose a novel logic rule-enhanced method which can be easily integrated with any translation based knowledge graph embedding model, such as TransE . We first introduce a method to automatically mine the logic rules and corresponding confidences from the triples. And then, to put both triples and mined logic rules within the same semantic space, all triples in the knowledge graph are represented as first-order logic. Finally, we define several operations on the first-order logic and minimize a global loss over both of the mined logic rules and the transformed first-order logics. We conduct extensive experiments for link prediction and triple classification on three datasets: WN18, FB166, and FB15K. Experiments show that the rule-enhanced method can significantly improve the performance of several baselines. The highlight of our model is that the filtered Hits@1, which is a pivotal evaluation in the knowledge inference task, has a significant improvement (up to 700% improvement).

KNOWLEDGE GRAPHS: The role of Domain Experts - Saal


We have previously delved into detail about concept, conceptualization, and relations to build a knowledge graph. In this, we shall see how domain expertise can contribute to these vital components of the graph and its building exercise. Current knowledge engineering methodologies are analogous to software engineering approaches. Knowledge Engineers drive the knowledge graph authoring process. They are the people who know how to create formal conceptualizations of a domain but do not know the domain to be modeled.

Learning Taxonomies of Concepts and not Words using Contextualized Word Representations: A Position Paper Machine Learning

Taxonomies are semantic hierarchies of concepts. One limitation of current taxonomy learning systems is that they define concepts as single words. This position paper argues that contextualized word representations, which recently achieved state-of-the-art results on many competitive NLP tasks, are a promising method to address this limitation. We outline a novel approach for taxonomy learning that (1) defines concepts as synsets, (2) learns density-based approximations of contextualized word representations, and (3) can measure similarity and hypernymy among them.

TuckER: Tensor Factorization for Knowledge Graph Completion Machine Learning

Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively simple but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms all previous state-of-the-art models across standard link prediction datasets. We prove that TuckER is a fully expressive model, deriving the bound on its entity and relation embedding dimensionality for full expressiveness which is several orders of magnitude smaller than the bound of previous state-of-the-art models ComplEx and SimplE. We further show that several previously introduced linear models can be viewed as special cases of TuckER.

Enhancing Semantic Word Representations by Embedding Deeper Word Relationships Artificial Intelligence

Word representations are created using analogy context-based statistics and lexical relations on words. Word representations are inputs for the learning models in Natural Language Understanding (NLU) tasks. However, to understand language, knowing only the context is not sufficient. Reading between the lines is a key component of NLU. Embedding deeper word relationships which are not represented in the context enhances the word representation. This paper presents a word embedding which combines an analogy, context-based statistics using Word2Vec, and deeper word relationships using Conceptnet, to create an expanded word representation. In order to fine-tune the word representation, Self-Organizing Map is used to optimize it. The proposed word representation is compared with semantic word representations using Simlex 999. Furthermore, the use of 3D visual representations has shown to be capable of representing the similarity and association between words. The proposed word representation shows a Spearman correlation score of 0.886 and provided the best results when compared to the current state-of-the-art methods, and exceed the human performance of 0.78.

SimplE Embedding for Link Prediction in Knowledge Graphs

Neural Information Processing Systems

Knowledge graphs contain knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs contain only a small subset of what is true in the world. Link prediction approaches aim at predicting new links for a knowledge graph given the existing links among the entities. Tensor factorization approaches have proved promising for such link prediction problems. Proposed in 1927, Canonical Polyadic (CP) decomposition is among the first tensor factorization approaches. CP generally performs poorly for link prediction as it learns two independent embedding vectors for each entity, whereas they are really tied. We present a simple enhancement of CP (which we call SimplE) to allow the two embeddings of each entity to be learned dependently. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of background knowledge can be incorporated into these embeddings through weight tying. We prove SimplE is fully expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques. SimplE's code is available on GitHub at

Expanding Holographic Embeddings for Knowledge Completion

Neural Information Processing Systems

Neural models operating over structured spaces such as knowledge graphs require a continuous embedding of the discrete elements of this space (such as entities) as well as the relationships between them. Relational embeddings with high expressivity, however, have high model complexity, making them computationally difficult to train. We propose a new family of embeddings for knowledge graphs that interpolate between a method with high model complexity and one, namely Holographic embeddings (HolE), with low dimensionality and high training efficiency. This interpolation, termed HolEx, is achieved by concatenating several linearly perturbed copies of original HolE. We formally characterize the number of perturbed copies needed to provably recover the full entity-entity or entity-relation interaction matrix, leveraging ideas from Haar wavelets and compressed sensing. In practice, using just a handful of Haar-based or random perturbation vectors results in a much stronger knowledge completion system. On the Freebase FB15K dataset, HolEx outperforms originally reported HolE by 14.7\% on the HITS@10 metric, and the current path-based state-of-the-art method, PTransE, by 4\% (absolute).

Knowledge Graphs, AI and Machine Learning


The Open Data Institute (ODI) is one of the leaders in using data in the public sector. Sir Nigel Shadbolt from the ODI has been working on AI for many decades. Now that AI is in the limelight, let's not forget all the long years of foundational research and the effort that went into accumulating data that facilitates AI. In his keynote, Sir Nigel Shadbolt emphasized the importance of Linked Data as critical infrastructure.