Semantic Networks


Human memory search as a random walk in a semantic network

Neural Information Processing Systems

The human mind has a remarkable ability to store a vast amount of information in memory, and an even more remarkable ability to retrieve these experiences when needed. Understanding the representations and algorithms that underlie human memory search could potentially be useful in other information retrieval settings, including internet search. Psychological studies have revealed clear regularities in how people search their memory, with clusters of semantically related items tending to be retrieved together. These findings have recently been taken as evidence that human memory search is similar to animals foraging for food in patchy environments, with people making a rational decision to switch away from a cluster of related information as it becomes depleted. We demonstrate that the results that were taken as evidence for this account also emerge from a random walk on a semantic network, much like the random web surfer model used in internet search engines.


DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs

Neural Information Processing Systems

In this paper, we study the problem of learning probabilistic logical rules for inductive and interpretable link prediction. Despite the importance of inductive link prediction, most previous works focused on transductive link prediction and cannot manage previously unseen entities. Moreover, they are black-box models that are not easily explainable for humans. We propose DRUM, a scalable and differentiable approach for mining first-order logical rules from knowledge graphs that resolves these problems. We motivate our method by making a connection between learning confidence scores for each rule and low-rank tensor approximation.


Assessing Social and Intersectional Biases in Contextualized Word Representations

Neural Information Processing Systems

Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities.


An Autoencoder Approach to Learning Bilingual Word Representations

Neural Information Processing Systems

Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. We empirically investigate the success of our approach on the problem of cross-language text classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German).


Hash Embeddings for Efficient Word Representations

Neural Information Processing Systems

A hash embedding may be seen as an interpolation between a standard word embedding and a word embedding created using a random hash function (the hashing trick). In hash embeddings each token is represented by $k$ $d$-dimensional embeddings vectors and one $k$ dimensional weight vector. The final $d$ dimensional representation of the token is the product of the two. Rather than fitting the embedding vectors for each token these are selected by the hashing trick from a shared pool of $B$ embedding vectors. Our experiments show that hash embeddings can easily deal with huge vocabularies consisting of millions tokens.


SimplE Embedding for Link Prediction in Knowledge Graphs

Neural Information Processing Systems

Knowledge graphs contain knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs contain only a small subset of what is true in the world. Link prediction approaches aim at predicting new links for a knowledge graph given the existing links among the entities. Tensor factorization approaches have proved promising for such link prediction problems. Proposed in 1927, Canonical Polyadic (CP) decomposition is among the first tensor factorization approaches.


Quaternion Knowledge Graph Embeddings

Neural Information Processing Systems

In this work, we move beyond the traditional complex-valued representations, introducing more expressive hypercomplex representations to model entities and relations for knowledge graph embeddings. More specifically, quaternion embeddings, hypercomplex-valued embeddings with three imaginary components, are utilized to represent entities. Relations are modelled as rotations in the quaternion space. The advantages of the proposed approach are: (1) Latent inter-dependencies (between all components) are aptly captured with Hamilton product, encouraging a more compact interaction between entities and relations; (2) Quaternions enable expressive rotation in four-dimensional space and have more degree of freedom than rotation in complex plane; (3) The proposed framework is a generalization of ComplEx on hypercomplex space while offering better geometrical interpretations, concurrently satisfying the key desiderata of relational representation learning (i.e., modeling symmetry, anti-symmetry and inversion). Experimental results demonstrate that our method achieves state-of-the-art performance on four well-established knowledge graph completion benchmarks.


Embedding Logical Queries on Knowledge Graphs

Neural Information Processing Systems

Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict "em what drugs are likely to target proteins involved with both diseases X and Y?" -- a query that requires reasoning about all possible proteins that might interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries -- a flexible but tractable subset of first-order logic -- on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space.


FRAGE: Frequency-Agnostic Word Representation

Neural Information Processing Systems

Continuous word representation (aka word embedding) is a basic building block in many neural network-based models used in natural language processing tasks. Although it is widely accepted that words with similar semantics should be close to each other in the embedding space, we find that word embeddings learned in several tasks are biased towards word frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of the embedding space, and the embedding of a rare word and a popular word can be far from each other even if they are semantically similar. This makes learned word embeddings ineffective, especially for rare words, and consequently limits the performance of these neural network models. In order to mitigate the issue, in this paper, we propose a neat, simple yet effective adversarial training method to blur the boundary between the embeddings of high-frequency words and low-frequency words. We conducted comprehensive studies on ten datasets across four natural language processing tasks, including word similarity, language modeling, machine translation and text classification.


Data Exploration and Validation on dense knowledge graphs for biomedical research

arXiv.org Artificial Intelligence

Here we present a holistic approach for data exploration on dense knowledge graphs as a novel approach with a proof-of-concept in biomedical research. Knowledge graphs are increasingly becoming a vital factor in knowledge mining and discovery as they connect data using technologies from the semantic web. In this paper we extend a basic knowledge graph extracted from biomedical literature by context data like named entities and relations obtained by text mining and other linked data sources like ontologies and databases. We will present an overview about this novel network. The aim of this work was to extend this current knowledge with approaches from graph theory. This method will build the foundation for quality control, validation of hypothesis, detection of missing data and time series analysis of biomedical knowledge in general. In this context we tried to apply multiple-valued decision diagrams to these questions. In addition this knowledge representation of linked data can be used as FAIR approach to answer semantic questions. This paper sheds new lights on dense and very large knowledge graphs and the importance of a graph-theoretic understanding of these networks.