Goto

Collaborating Authors

 Personal Assistant Systems


Preferences in Interactive Systems: Technical Challenges and Case Studies

AI Magazine

Interactive artificial intelligence systems employ preferences in both their reasoning and their interaction with the user. This survey considers preference handling in applications such as recommender systems, personal assistant agents, and personalized user interfaces. We survey the major questions and approaches, present illustrative examples, and give an outlook on potential benefits and challenges.


User-Involved Preference Elicitation for Product Search and Recommender Systems

AI Magazine

We address user system interaction issues in product search and recommender systems: how to help users select the most preferential item from a large collection of alternatives. As such systems must crucially rely on an accurate and complete model of user preferences, the acquisition of this model becomes the central subject of our paper. Many tools used today do not satisfactorily assist users to establish this model because they do not adequately focus on fundamental decision objectives, help them reveal hidden preferences, revise conflicting preferences, or explicitly reason about tradeoffs. As a result, users fail to find the outcomes that best satisfy their needs and preferences. In this article, we provide some analyses of common areas of design pitfalls and derive a set of design guidelines that assist the user in avoiding these problems in three important areas: user preference elicitation, preference revision, and explanation interfaces. For each area, we describe the state-of-the-art of the developed techniques and discuss concrete scenarios where they have been applied and tested.


Unsupervised Feature Selection for Accurate Recommendation of High-Dimensional Image Data

Neural Information Processing Systems

Content-based image suggestion (CBIS) targets the recommendation of products based on user preferences on the visual content of images. In this paper, we motivate both feature selection and model order identification as two key issues for a successful CBIS. We propose a generative model in which the visual features and users are clustered into separate classes. We identify the number of both user and image classes with the simultaneous selection of relevant visual features using the message length approach. The goal is to ensure an accurate prediction of ratings for multidimensional non-Gaussian and continuous image descriptors. Experiments on a collected data have demonstrated the merits of our approach.


COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking

Neural Information Processing Systems

In this paper, we consider collaborative filtering as a ranking problem. We present a method which uses Maximum Margin Matrix Factorization and optimizes ranking insteadof rating. We employ structured output prediction to optimize directly for ranking scores. Experimental results show that our method gives very good ranking scores and scales well on collaborative filtering tasks.


Automatic Generation of Social Tags for Music Recommendation

Neural Information Processing Systems

Social tags are user-generated keywords associated with some resource on the Web. In the case of music, social tags have become an important component of Web2.0" recommender systems, allowing users to generate playlists based on use-dependent terms such as "chill" or "jogging" that have been applied to particular songs. In this paper, we propose a method for predicting these social tags directly from MP3 files. Using a set of boosted classifiers, we map audio features onto social tags collected from the Web. The resulting automatic tags (or "autotags") furnish information about music that is otherwise untagged or poorly tagged, allowing for insertion of previously unheard music into a social recommender. This avoids the ''cold-start problem'' common in such systems. Autotags can also be used to smooth the tag space from which similarities and recommendations are made by providing a set of comparable baseline tags for all tracks in a recommender system."



Emergence of Spontaneous Order Through Neighborhood Formation in Peer-to-Peer Recommender Systems

arXiv.org Artificial Intelligence

The advent of the Semantic Web necessitates paradigm shifts away from centralized client/server architectures towards decentralization and peer-to-peer computation, making the existence of central authorities superfluous and even impossible. At the same time, recommender systems are gaining considerable impact in e-commerce, providing people with recommendations that are personalized and tailored to their very needs. These recommender systems have traditionally been deployed with stark centralized scenarios in mind, operating in closed communities detached from their host network's outer perimeter. We aim at marrying these two worlds, i.e., decentralized peer-to-peer computing and recommender systems, in one agent-based framework. Our architecture features an epidemic-style protocol maintaining neighborhoods of like-minded peers in a robust, selforganizing fashion. In order to demonstrate our architecture's ability to retain scalability, robustness and to allow for convergence towards high-quality recommendations, we conduct offline experiments on top of the popular MovieLens dataset.


Electric Elves: What Went Wrong and Why

AI Magazine

Software personal assistants continue to be a topic of signi๏ฌcant research interest. This article outlines some of the important lessons learned from a successfully-deployed team of personal assistant agents (Electric Elves) in an of๏ฌce environment. In the Electric Elves project, a team of almost a dozen personal assistant agents were continually active for seven months. Each elf (agent) represented one person and assisted in daily activities in an actual of๏ฌce environment. This project led to several important observations about privacy, adjustable autonomy, and social norms in of๏ฌce environments. In addition to outlining some of the key lessons learned we outline our continued research to address some of the concerns raised.


An Intelligent Multi-Agent Recommender System for Human Capacity Building

arXiv.org Artificial Intelligence

This paper presents a Multi-Agent approach to the problem of recommending training courses to engineering professionals. The recommendation system is built as a proof of concept and limited to the electrical and mechanical engineering disciplines. Through user modelling and data collection from a survey, collaborative filtering recommendation is implemented using intelligent agents. The agents work together in recommending meaningful training courses and updating the course information. The system uses a users profile and keywords from courses to rank courses. A ranking accuracy for courses of 90% is achieved while flexibility is achieved using an agent that retrieves information autonomously using data mining techniques from websites. This manner of recommendation is scalable and adaptable. Further improvements can be made using clustering and recording user feedback.


On Affinity Measures for Artificial Immune System Movie Recommenders

arXiv.org Artificial Intelligence

We combine Artificial Immune Systems 'AIS', technology with Collaborative Filtering 'CF' and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin 3, 4, 5. Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendalls Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.