Personal Assistant Systems: Instructional Materials

Sex toy inventor hacks Amazon Echo smart speaker to create dominatrix

Daily Mail

An amateur sex toy inventor has created a smart speaker that doubles up as a voice-controlled dominatrix. British engineer Gary, who keeps his surname anonymous, created his discipline device using parts of an electrified dog collar and an Amazon Echo Dot speaker. Known as mistress Alexa, the gadget administers shocks to its wearer's genitals following a short conversation that users initiate with the phrase'Alexa, punish'. Gary, who built the device for partner Kirsty, has posted a tutorial video to YouTube to help other sex toy enthusiasts build their own dominatrix technologies. An amateur sex toy inventor has created a smart speaker that doubles up as a voice-controlled dominatrix.

Creepy or convenient? Google Assistant can make human-sounding phone calls on your behalf


Google's Assistant, its answer to Amazon's Alexa and Apple's Siri, is getting smarter, more visual, and potentially, more helpful. At the I/O conference in Mountain View, Calif., Google put the spotlight on the assistant, bringing new voices, including one from singer John Legend, and more visuals. Additionally, Google has beefed up voice commands for its popular Maps app, bringing the Assistant to the feature in the summer. Google execs offered demos on new iPad-like Smart Displays coming from Lenovo and Google later in the year, which will allow voice navigation via the Google Assistant to say, watch Jimmy Kimmel Live via YouTube TV or order lattes from Starbucks. Google emphasized that visuals will be coming to the Google Assistant app, to marry voice navigation with tools like food recipes, where you'll get spoken step-by-step instructions, along with video.

Learn to Build Amazon Alexa Skills & Converse with Machines


There is a shift happening in the way we as a species communicate with machines. With the advent of Amazon Alexa, Google Assistant, Apple Siri, and Microsoft Cortana, the focus on Voice User Interfaces or Voice Activated Conversational Interfaces is rapidly increasing. This ever changing world presents a threat to the way we operate, especially when we do not understand it. A more AI aware world might be years away, but if we learn how to talk to and control the machines then we grow collectively. Yes, Amazon Alexa and similar voice activated interfaces look and sound pretty cool.

WalkMe adds predictive analytics to its platform for optimizing user experience - SiliconANGLE


WalkMe Ltd., maker of a platform for understanding and improving user experience, has added predictive analytics capabilities to its intelligent assistant technology that interprets user behavior to predict next actions and provide context-sensitive responses.

Data Science Certification Training Course - Intellipaat


Topics: This is real world project that gives you hands-on experience in working with a movie recommender system. Depending on what movies are liked by a particular user, you will be in a position to provide data-driven recommendations. This project involves understanding recommender systems, information filtering, predicting'rating', learning about user'preference' and so on. You will exclusively work on data related to user details, movie details and others.

Natural Language Processing: Crash Course Computer Science #36


Today we're going to talk about how computers understand speech and speak themselves. As computers play an increasing role in our daily lives there has been an growing demand for voice user interfaces, but speech is also terribly complicated. Vocabularies are diverse, sentence structures can often dictate the meaning of certain words, and computers also have to deal with accents, mispronunciations, and many common linguistic faux pas. The field of Natural Language Processing, or NLP, attempts to solve these problems, with a number of techniques we'll discuss today. And even though our virtual assistants like Siri, Alexa, Google Home, Bixby, and Cortana have come a long way from the first speech processing and synthesis models, there is still much room for improvement.

Deep Learning for Personalized Search and Recommender Systems


Deep learning has been widely successful in solving complex tasks such as image recognition (ImageNet), speech recognition, machine translation, etc. In the area of personalized recommender systems, deep learning has started showing promising advances in recent years. The key to success of deep learning in personalized recommender systems is its ability to learn distributed representations of users' and items' attributes in low dimensional dense vector space and combine these to recommend relevant items to users. To address scalability, the implementation of a recommendation system at web scale often leverages components from information retrieval systems, such as inverted indexes where a query is constructed from a user's attribute and context, learning to rank techniques. Additionally, it relies on machine learning models to predict the relevance of items, such as collaborative filtering. In this tutorial, we present ways to leverage deep learning towards improving recommender system. The tutorial is divided into four parts: (1) In the first part, we will present an overview of concepts in deep learning which are pertinent to recommender systems including sequence modeling, word embedding and named entity recognition.

Learn how to build Raspberry Pi computers with this $15 online class


Just to let you know, if you buy something featured here, Mashable might earn an affiliate commission. A partnership between Broadcom and the University of Cambridge, the U.K. based Raspberry Pi Foundation creates credit card-sized computers that promote learning how to code and educational research. Since the computers went on the market in 2012, Raspberry Pi has sold over eight million models and is the United Kingdom's best-selling computer. Setting up a Raspberry Pi is easy. Simply plug in a monitor, mouse, and keyboard, and install the computer.

Machine Learning for Recommender Systems: A Beginner's Guide


If you have and you want to learn the science behind them, you have come to the right place. In this course, I will show you how these companies use Recommender systems or Machine Learning to influence your purchasing decisions. This course is timely and extremely relevant now as almost all major service-oriented companies function on recommender systems. You will understand how these systems work and learn how to build and use your own recommender systems, just like these big companies do. Learn how to build the recommender systems that are being used by almost every big service-oriented company in today's world with this introductory course for beginners.

How to Build an Email Sentiment Analysis Bot: An NLP Tutorial


Natural language processing technologies have become quite sophisticated over the past few years. From tech giants to hobbyists, many are rushing to build rich interfaces that can analyze, understand, and respond to natural language. Amazon's Alexa, Microsoft's Cortana, Google's Google Home, and Apple's Siri all aim to change the way we interact with computers. Sentiment analysis, a subfield of natural language processing, consists of techniques that determine the tone of a text or speech. Today, with machine learning and large amounts of data harvested from social media and review sites, we can train models to identify the sentiment of a natural language passage with fair accuracy.